Advertisement

Journal of High Energy Physics

, 2018:114 | Cite as

Model-independent prediction of R(ηc)

  • Anson Berns
  • Henry Lamm
Open Access
Regular Article - Theoretical Physics
  • 39 Downloads

Abstract

We present a model-independent prediction for R(ηc)≡ℬℛ(B c +  → ηcτ+ντ)/ℬℛ(B c +  → ηcµ+νµ). This prediction is obtained from the form factors through a combination of dispersive relations, heavy-quark relations at zero-recoil, and the limited existing determinations from lattice QCD. The resulting prediction, R(ηc) = 0.29(5), agrees with previous model predictions, but without uncontrolled systematic uncertainties.

Keywords

Heavy Quark Physics Quark Masses and SM Parameters Lattice QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Colangelo and F. De Fazio, Scrutinizing \( \overline{B}\to {D}^{\ast}\left(D\pi \right){\ell}^{-}{\overline{\nu}}_{\ell}\kern0.5em and\kern0.5em \overline{B}\to {D}^{\ast}\left(D\gamma \right){\ell}^{-}{\overline{\nu}}_{\ell } \) in search of new physics footprints, JHEP 06 (2018) 082 [arXiv:1801.10468] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.A. Ivanov, J.G. Körner and C.-T. Tran, Analyzing new physics in the decays \( {\overline{B}}^0\to {D}^{\left(*\right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) with form factors obtained from the covariant quark model, Phys. Rev. D 94 (2016) 094028 [arXiv:1607.02932] [INSPIRE].
  3. [3]
    C.-T. Tran, M.A. Ivanov, J.G. Körner and P. Santorelli, Implications of new physics in the decays B c → (J/ψ, η c)τν, Phys. Rev. D 97 (2018) 054014 [arXiv:1801.06927] [INSPIRE].
  4. [4]
    S. Bhattacharya, S. Nandi and S.K. Patra, Optimal-observable analysis of possible new physics in BD (*) τν τ, Phys. Rev. D 93 (2016) 034011 [arXiv:1509.07259] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Bhattacharya, S. Nandi and S.K. Patra, Looking for possible new physics in BD (*) τν τ in light of recent data, Phys. Rev. D 95 (2017) 075012 [arXiv:1611.04605] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Bhattacharya, S. Nandi and S. Kumar Patra, bcτν τ Decays: A Catalogue to Compare, Constrain and Correlate New Physics Effects, arXiv:1805.08222 [INSPIRE].
  7. [7]
    S. Jaiswal, S. Nandi and S.K. Patra, Extraction of |V cb| from BD (*)ν and the Standard Model predictions of R(D (*)), JHEP 12 (2017) 060 [arXiv:1707.09977] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T.D. Cohen, H. Lamm and R.F. Lebed, Tests of the standard model in BDν , BD *ν and B cJ/ψν , Phys. Rev. D 98 (2018) 034022 [arXiv:1807.00256] [INSPIRE].ADSGoogle Scholar
  9. [9]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  10. [10]
    BaBar collaboration, J.P. Lees et al., Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  11. [11]
    BaBar collaboration, J.P. Lees et al., Measurement of an Excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  12. [12]
    Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(*\right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  13. [13]
    Belle collaboration, Y. Sato et al., Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, Phys. Rev. D 94 (2016) 072007 [arXiv:1607.07923] [INSPIRE].
  14. [14]
    LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE.
  15. [15]
    Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
  16. [16]
    LHCb collaboration, Measurement of the ratio of the B 0D *− τ + ν τ and B 0D *− μ + ν μ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].
  17. [17]
    LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B 0D *− τ + ν τ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].
  18. [18]
    Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \) with one-prong hadronic τ decays at Belle, Phys. Rev. D 97 (2018) 012004 [arXiv:1709.00129] [INSPIRE].
  19. [19]
    F.U. Bernlochner, Z. Ligeti, M. Papucci and D.J. Robinson, Combined analysis of semileptonic B decays to D and D * : R(D (*)), |V cb| and new physics, Phys. Rev. D 95 (2017) 115008 [Erratum ibid. D 97 (2018) 059902] [arXiv:1703.05330] [INSPIRE].
  20. [20]
    D. Bigi, P. Gambino and S. Schacht, R(D *), |V cb| and the Heavy Quark Symmetry relations between form factors, JHEP 11 (2017) 061 [arXiv:1707.09509] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    MILC collaboration, J.A. Bailey et al., BDν form factors at nonzero recoil and |V cb| from 2 + 1-flavor lattice QCD, Phys. Rev. D 92 (2015) 034506 [arXiv:1503.07237] [INSPIRE].
  23. [23]
    HPQCD collaboration, H. Na, C.M. Bouchard, G.P. Lepage, C. Monahan and J. Shigemitsu, BDlν form factors at nonzero recoil and extraction of |V cb|, Phys. Rev. D 92 (2015) 054510 [Erratum ibid. D 93 (2016) 119906] [arXiv:1505.03925] [INSPIRE].
  24. [24]
    D. Bigi and P. Gambino, Revisiting BDν, Phys. Rev. D 94 (2016) 094008 [arXiv:1606.08030] [INSPIRE].ADSGoogle Scholar
  25. [25]
    LHCb collaboration, Measurement of the ratio of branching fractions ℬ(B c+ → J/ψτ + ν τ)/ℬ(B c+ → J/ψµ + ν µ), Phys. Rev. Lett. 120 (2018) 121801 [arXiv:1711.05623] [INSPIRE].
  26. [26]
    T.D. Cohen, H. Lamm and R.F. Lebed, Model-independent bounds on R(J/ψ), JHEP 09 (2018) 168 [arXiv:1807.02730] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    B. Hamilton and H. Jawahery, personal communication.Google Scholar
  28. [28]
    A.Y. Anisimov, P.Y. Kulikov, I.M. Narodetsky and K.A. Ter-Martirosian, Exclusive and inclusive decays of the B c meson in the light front ISGW model, Phys. Atom. Nucl. 62 (1999) 1739 [hep-ph/9809249] [INSPIRE].
  29. [29]
    V.V. Kiselev, A.K. Likhoded and A.I. Onishchenko, Semileptonic B c meson decays in sum rules of QCD and NRQCD, Nucl. Phys. B 569 (2000) 473 [hep-ph/9905359] [INSPIRE].
  30. [30]
    M.A. Ivanov, J.G. Körner and P. Santorelli, The Semileptonic decays of the B c meson, Phys. Rev. D 63 (2001) 074010 [hep-ph/0007169] [INSPIRE].
  31. [31]
    V.V. Kiselev, Exclusive decays and lifetime of B c meson in QCD sum rules, hep-ph/0211021 [INSPIRE].
  32. [32]
    M.A. Ivanov, J.G. Körner and P. Santorelli, Exclusive semileptonic and nonleptonic decays of the B c meson, Phys. Rev. D 73 (2006) 054024 [hep-ph/0602050] [INSPIRE].
  33. [33]
    E. Hernandez, J. Nieves and J.M. Verde-Velasco, Study of exclusive semileptonic and non-leptonic decays of B c in a nonrelativistic quark model, Phys. Rev. D 74 (2006) 074008 [hep-ph/0607150] [INSPIRE].
  34. [34]
    C.-F. Qiao and R.-L. Zhu, Estimation of semileptonic decays of B c meson to S-wave charmonia with nonrelativistic QCD, Phys. Rev. D 87 (2013) 014009 [arXiv:1208.5916] [INSPIRE].ADSGoogle Scholar
  35. [35]
    W.-F. Wang, Y.-Y. Fan and Z.-J. Xiao, Semileptonic decays B c → (η c ,J/Ψ)lν in the perturbative QCD approach, Chin. Phys. C 37 (2013) 093102 [arXiv:1212.5903] [INSPIRE].ADSGoogle Scholar
  36. [36]
    Z. Rui, H. Li, G.-x. Wang and Y. Xiao, Semileptonic decays of B c meson to S-wave charmonium states in the perturbative QCD approach, Eur. Phys. J. C 76 (2016) 564 [arXiv:1602.08918] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Dutta and A. Bhol, B c → (J/ψ, η c)τν semileptonic decays within the standard model and beyond, Phys. Rev. D 96 (2017) 076001 [arXiv:1701.08598] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Liptaj, S. Dubnicka, A.Z. Dubnickova, M.A. Ivanov and A. Issadykov, Selected Decays of Heavy Mesons in Covariant Confined Quark Model: Semileptonic and Nonleptonic Decays of B c Meson, PoS(EPS-HEP2017)667 (2017) [INSPIRE].
  39. [39]
    A. Issadykov and M.A. Ivanov, The decays \( {B}_c\to J/\psi +\overline{\ell}{\nu}_{\ell } \) and B cJ/ψ + π(K) in covariant confined quark model, Phys. Lett. B 783 (2018) 178 [arXiv:1804.00472] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    HPQCD collaboration, B. Colquhoun, C. Davies, J. Koponen, A. Lytle and C. McNeile, B c decays from highly improved staggered quarks and NRQCD, PoS(LATTICE2016)281 (2016) [arXiv:1611.01987] [INSPIRE].
  41. [41]
    A. Lytle, personal communication.Google Scholar
  42. [42]
    C.W. Murphy and A. Soni, Model-Independent Determination of B c+ → η c + ν Form Factors, Phys. Rev. D 98 (2018) 094026 [arXiv:1808.05932] [INSPIRE].Google Scholar
  43. [43]
    N. Isgur and M.B. Wise, Weak Decays of Heavy Mesons in the Static Quark Approximation, Phys. Lett. B 232 (1989) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    N. Isgur and M.B. Wise, Weak Transition Form-Factors Between Heavy Mesons, Phys. Lett. B 237 (1990) 527 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    E.E. Jenkins, M.E. Luke, A.V. Manohar and M.J. Savage, Semileptonic B c decay and heavy quark spin symmetry, Nucl. Phys. B 390 (1993) 463 [hep-ph/9204238] [INSPIRE].
  46. [46]
    A.F. Falk, H. Georgi, B. Grinstein and M.B. Wise, Heavy Meson Form-factors From QCD, Nucl. Phys. B 343 (1990) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P. Colangelo and F. De Fazio, Using heavy quark spin symmetry in semileptonic B c decays, Phys. Rev. D 61 (2000) 034012 [hep-ph/9909423] [INSPIRE].
  48. [48]
    C.G. Boyd, B. Grinstein and R.F. Lebed, Precision corrections to dispersive bounds on form-factors, Phys. Rev. D 56 (1997) 6895 [hep-ph/9705252] [INSPIRE].
  49. [49]
    B. Grinstein and R.F. Lebed, Above-Threshold Poles in Model-Independent Form Factor Parametrizations, Phys. Rev. D 92 (2015) 116001 [arXiv:1509.04847] [INSPIRE].ADSGoogle Scholar
  50. [50]
    C.G. Boyd, B. Grinstein and R.F. Lebed, Constraints on form-factors for exclusive semileptonic heavy to light meson decays, Phys. Rev. Lett. 74 (1995) 4603 [hep-ph/9412324] [INSPIRE].
  51. [51]
    C.G. Boyd, B. Grinstein and R.F. Lebed, Model independent extraction of |V cb| using dispersion relations, Phys. Lett. B 353 (1995) 306 [hep-ph/9504235] [INSPIRE].
  52. [52]
    C.G. Boyd and R.F. Lebed, Improved QCD form-factor constraints and \( {\Lambda}_b\to {\Lambda}_c\ell \overline{\nu} \), Nucl. Phys. B 485 (1997) 275 [hep-ph/9512363] [INSPIRE].
  53. [53]
    C.G. Boyd, B. Grinstein and R.F. Lebed, Model independent determinations of \( \overline{B}\to D\ell \nu, \kern0.5em {D}^{\ast}\ell \overline{\nu} \) form-factors, Nucl. Phys. B 461 (1996) 493 [hep-ph/9508211] [INSPIRE].
  54. [54]
    S.C. Generalis, QCD sum rules. 1: Perturbative results for current correlators, J. Phys. G 16 (1990) 785 [INSPIRE].
  55. [55]
    L.J. Reinders, H.R. Rubinstein and S. Yazaki, QCD Contribution to Vacuum Polarization 2. The Pseudoscalar Unequal Mass Case, Phys. Lett. B 97 (1980) 257 [Erratum ibid. B 100 (1981) 519] [INSPIRE].
  56. [56]
    L.J. Reinders, S. Yazaki and H.R. Rubinstein, Two Point Functions for Flavor Changing Currents in QCD, Phys. Lett. B 103 (1981) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    L.J. Reinders, H. Rubinstein and S. Yazaki, Hadron Properties from QCD Sum Rules, Phys. Rept. 127 (1985) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Djouadi and P. Gambino, Electroweak gauge bosons selfenergies: Complete QCD corrections, Phys. Rev. D 49 (1994) 3499 [Erratum ibid. D 53 (1996) 4111] [hep-ph/9309298] [INSPIRE].
  59. [59]
    I. Caprini, Effect of upsilon poles on the analyticity constraints for heavy meson form-factors, Z. Phys. C 61 (1994) 651 [INSPIRE].ADSGoogle Scholar
  60. [60]
    I. Caprini, Slope of the Isgur-Wise function from a QSSR constraint on the \( \Upsilon B\overline{B} \) couplings, Phys. Lett. B 339 (1994) 187 [hep-ph/9408238] [INSPIRE].
  61. [61]
    E.J. Eichten and C. Quigg, Mesons with beauty and charm: Spectroscopy, Phys. Rev. D 49 (1994) 5845 [hep-ph/9402210] [INSPIRE].
  62. [62]
    Fermilab Lattice and MILC collaborations, J.A. Bailey et al., Update of |V cb| from the \( \overline{B}\to {D}^{\ast}\ell \overline{\nu} \) form factor at zero recoil with three-flavor lattice QCD, Phys. Rev. D 89 (2014) 114504 [arXiv:1403.0635] [INSPIRE].
  63. [63]
    J. Harrison, C. Davies and M. Wingate, |V cb| from the \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}\overline{\nu} \) zero-recoil form factor using 2 + 1 + 1 flavour HISQ and NRQCD, PoS(LATTICE2016)287 (2017) [arXiv:1612.06716] [INSPIRE].
  64. [64]
    HPQCD collaboration, J. Harrison, C. Davies and M. Wingate, Lattice QCD calculation of the B (s) → D ( s)* ℓν form factors at zero recoil and implications for |V cb|, Phys. Rev. D 97 (2018) 054502 [arXiv:1711.11013] [INSPIRE].
  65. [65]
    LANL-SWME collaboration, J.A. Bailey et al., Calculation of \( \overline{B}\to {D}^{\ast}\ell \overline{\nu} \) form factor at zero recoil using the Oktay-Kronfeld action, Eurphys. J. Web Conf. 175 (2018) 13012 [arXiv:1711.01786] [INSPIRE].
  66. [66]
    W. Detmold, C. Lehner and S. Meinel, \( {\varLambda}_b\to p{\ell}^{-}\overline{\nu}\ell \) and \( {\Lambda}_b\to {\Lambda}_c{\ell}^{-}{\overline{\nu}}_{\ell } \) form factors from lattice QCD with relativistic heavy quarks, Phys. Rev. D 92 (2015) 034503 [arXiv:1503.01421] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Montgomery Blair High SchoolSilver SpringU.S.A.
  2. 2.Department of PhysicsUniversity of MarylandCollege ParkU.S.A.

Personalised recommendations