Advertisement

Journal of High Energy Physics

, 2018:113 | Cite as

A nonrelativistic limit for AdS perturbations

  • Piotr BizońEmail author
  • Oleg Evnin
  • Filip Ficek
Open Access
Regular Article - Theoretical Physics

Abstract

The familiar c → ∞ nonrelativistic limit converts the Klein-Gordon equation in Minkowski spacetime to the free Schrödinger equation, and the Einstein-massive-scalar system without a cosmological constant to the Schrödinger-Newton (SN) equation. In this paper, motivated by the problem of stability of Anti-de Sitter (AdS) spacetime, we examine how this limit is affected by the presence of a negative cosmological constant Λ. Assuming for consistency that the product Λc2 tends to a negative constant as c → ∞, we show that the corresponding nonrelativistic limit is given by the SN system with an external harmonic potential which we call the Schrödinger-Newton-Hooke (SNH) system. We then derive the resonant approximation which captures the dynamics of small amplitude spherically symmetric solutions of the SNH system. This resonant system turns out to be much simpler than its general-relativistic version, which makes it amenable to analytic methods. Specifically, in four spatial dimensions, we show that the resonant system possesses a three-dimensional invariant subspace on which the dynamics is completely integrable and hence can be solved exactly. The evolution of the two-lowest-mode initial data (an extensively studied case for the original general-relativistic system), in particular, is described by this family of solutions.

Keywords

Classical Theories of Gravity AdS-CFT Correspondence Conformal and W Symmetry Integrable Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Bizon and A. Rostworowski, On weakly turbulent instability of anti-de Sitter space, Phys. Rev. Lett. 107 (2011) 031102 [arXiv:1104.3702] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Moschidis, A proof of the instability of AdS for the Einstein-massless Vlasov system, arXiv:1812.04268 [INSPIRE].
  3. [3]
    G. Moschidis, A proof of the instability of AdS for the Einstein-null dust system with an inner mirror, arXiv:1704.08681 [INSPIRE].
  4. [4]
    V. Balasubramanian, A. Buchel, S.R. Green, L. Lehner and S.L. Liebling, Holographic Thermalization, Stability of Anti-de Sitter Space and the Fermi-Pasta-Ulam Paradox, Phys. Rev. Lett. 113 (2014) 071601 [arXiv:1403.6471] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    B. Craps, O. Evnin and J. Vanhoof, Renormalization group, secular term resummation and AdS (in)stability, JHEP 10 (2014) 048 [arXiv:1407.6273] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    B. Craps, O. Evnin and J. Vanhoof, Renormalization, averaging, conservation laws and AdS (in)stability, JHEP 01 (2015) 108 [arXiv:1412.3249] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    P. Bizoń, M. Maliborski and A. Rostworowski, Resonant Dynamics and the Instability of Anti-de Sitter Spacetime, Phys. Rev. Lett. 115 (2015) 081103 [arXiv:1506.03519] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.R. Green, A. Maillard, L. Lehner and S.L. Liebling, Islands of stability and recurrence times in AdS, Phys. Rev. D 92 (2015) 084001 [arXiv:1507.08261] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    B. Craps and O. Evnin, AdS (in)stability: an analytic approach, Fortsch. Phys. 64 (2016) 336 [arXiv:1510.07836] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    P. Basu, C. Krishnan and A. Saurabh, A stochasticity threshold in holography and the instability of AdS, Int. J. Mod. Phys. A 30 (2015) 1550128 [arXiv:1408.0624] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Bizoń, B. Craps, O. Evnin, D. Hunik, V. Luyten and M. Maliborski, Conformal Flow on S 3 and Weak Field Integrability in AdS 4, Commun. Math. Phys. 353 (2017) 1179 [arXiv:1608.07227] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    P. Bizon, D. Hunik-Kostyra and D. Pelinovsky, Ground state of the conformal flow on \( \mathbb{S} \) 3, arXiv:1706.07726 [INSPIRE].
  13. [13]
    B. Craps, O. Evnin and V. Luyten, Maximally rotating waves in AdS and on spheres, JHEP 09 (2017) 059 [arXiv:1707.08501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    P. Bizon, D. Hunik-Kostyra and D.E. Pelinovsky, Stationary states of the cubic conformal flow on \( \mathbb{S} \) 3, arXiv:1807.00426 [INSPIRE].
  15. [15]
    P. Gérard and S. Grellier, The cubic Szegő equation, Annales Sci. Ecole Norm. Sup. 43 (2010) 761 [arXiv:0906.4540].
  16. [16]
    A.F. Biasi, J. Mas and A. Paredes, Delayed collapses of Bose-Einstein condensates in relation to anti-de Sitter gravity, Phys. Rev. E 95 (2017) 032216 [arXiv:1610.04866] [INSPIRE].ADSGoogle Scholar
  17. [17]
    H. Bacry and J. Levy-Leblond, Possible kinematics, J. Math. Phys. 9 (1968) 1605 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J.-R. Derome and J.-G. Dubois, Hookes symmetries and non-relativistic cosmological kinematicsI, Nuovo Cim. B 9 (1972) 351.ADSCrossRefGoogle Scholar
  19. [19]
    J.-G. Dubois, Hookes symmetries and non-relativistic cosmological kinematicsII, Nuovo Cim. B 15 (1973) 1.ADSCrossRefGoogle Scholar
  20. [20]
    R. Aldrovandi, A.L. Barbosa, L.C.B. Crispino and J.G. Pereira, Non-Relativistic spacetimes with cosmological constant, Class. Quant. Grav. 16 (1999) 495 [gr-qc/9801100] [INSPIRE].
  21. [21]
    G.W. Gibbons and C.E. Patricot, Newton-Hooke space-times, Hpp waves and the cosmological constant, Class. Quant. Grav. 20 (2003) 5225 [hep-th/0308200] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    P. Germain, Z. Hani and L. Thomann, On the continuous resonant equation for NLS: I. Deterministic analysis, J. Math. Pur. App. 105 (2016) 131 [arXiv:1501.03760].
  23. [23]
    P. Germain and L. Thomann, On the high frequency limit of the LLL equation, Quart. Appl. Math. 74 (2016) 633 [arXiv:1509.09080].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Biasi, P. Bizon, B. Craps and O. Evnin, Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates, Phys. Rev. A 96 (2017) 053615 [arXiv:1705.00867] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Gérard, P. Germain and L. Thomann, On the Cubic Lowest Landau Level Equation, arXiv:1709.04276 [INSPIRE].
  26. [26]
    A. Biasi, P. Bizon, B. Craps and O. Evnin, Two infinite families of resonant solutions for the Gross-Pitaevskii equation, Phys. Rev. E 98 (2018) 032222 [arXiv:1805.01775] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Biasi, P. Bizon and O. Evnin, Solvable cubic resonant systems, arXiv:1805.03634 [INSPIRE].
  28. [28]
    V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theor. App. 19 (2017) 773 [arXiv:1606.02158].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    D.J. Kaup, Klein-Gordon Geon, Phys. Rev. 172 (1968) 1331 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Ruffini and S. Bonazzola, Systems of selfgravitating particles in general relativity and the concept of an equation of state, Phys. Rev. 187 (1969) 1767 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Penrose, On gravitys role in quantum state reduction, Gen. Rel. Grav. 28 (1996) 581 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    I.M. Moroz, R. Penrose and P. Tod, Spherically symmetric solutions of the Schrödinger-Newton equations, Class. Quant. Grav. 15 (1998) 2733 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    J. Krieger, E. Lenzmann and P. Raphaël, On stability of pseudo-conformal blowup for L 2 -critical Hartree NLS, Ann. Henri Poincaré 10 (2009) 1159 [arXiv:0808.2324].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    J. Krieger, Y. Martel and P. Raphaël, Two-soliton solutions to the three-dimensional gravitational Hartree equation, Commun. Pure Appl. Math. 62 (2009) 1501.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    J. Fröhlich and E. Lenzmann, Mean-field limit of quantum Bose gases and nonlinear Hartree equation, talk at Séminaire Équations aux Dérivées Partielles, 2003-2004, Exp. No. XIX [math-ph/0409019].
  36. [36]
    R. Carles, N.J. Mauser and H.P. Stimming, (Semi)classical limit of the Hartree equation with harmonic potential SIAM J. Appl. Math. 66 (2005) 29.Google Scholar
  37. [37]
    U. Niederer, The maximal kinematical invariance group of the harmonic oscillator, Helv. Phys. Acta 46 (1973) 191 [INSPIRE].Google Scholar
  38. [38]
    K. Ohashi, T. Fujimori and M. Nitta, Conformal symmetry of trapped Bose-Einstein condensates and massive Nambu-Goldstone modes, Phys. Rev. A 96 (2017) 051601 [arXiv:1705.09118] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Giulini and A. Grossardt, The Schródinger-Newton equation as non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields, Class. Quant. Grav. 29 (2012) 215010 [arXiv:1206.4250] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    G. Fodor, P. Forgacs and M. Mezei, Boson stars and oscillatons in an inflationary universe, Phys. Rev. D 82 (2010) 044043 [arXiv:1007.0388] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Freeman and Co (1973).Google Scholar
  42. [42]
    R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Mod. Meth. Appl. Sci. 12 (2002) 1513.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    C. Duval and S. Lazzarini, On the Schrödinger-Newton equation and its symmetries: a geometric view, Class. Quant. Grav. 32 (2015) 175006 [arXiv:1504.05042] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    T. Tao, A pseudoconformal compactification of the nonlinear Schrödinger equation and applications, New York J. Math. 15 (2009) 265 [math/0606254].
  45. [45]
    R. Carles, Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation, Ann. Inst. H. Poincaré C 20 (2003) 501.ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    F.V. Dimitrakopoulos, B. Freivogel, M. Lippert and I.-S. Yang, Position space analysis of the AdS (in)stability problem, JHEP 08 (2015) 077 [arXiv:1410.1880] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    J.A. Murdock, Perturbations: Theory and Methods, SIAM (1987).Google Scholar
  48. [48]
    S. Kuksin and A. Maiocchi, The effective equation method, in New Approaches to Nonlinear Waves, Springer (2016) [arXiv:1501.04175].
  49. [49]
    A. Biasi, B. Craps and O. Evnin, Energy returns in global AdS 4, arXiv:1810.04753 [INSPIRE].
  50. [50]
    O. Evnin and W. Piensuk, Quantum resonant systems, integrable and chaotic, arXiv:1808.09173 [INSPIRE].
  51. [51]
    M.V. Berry and M. Tabor, Level clustering in the regular spectrum, Proc. Roy. Soc. Lond. A 356 (1977) 375.Google Scholar
  52. [52]
    O. Bohigas, M.J. Giannoni and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    T. Guhr, A. Müller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: Common concepts, Phys. Rept. 299 (1998) 189 [cond-mat/9707301] [INSPIRE].
  54. [54]
    F. Haake, Quantum signatures of chaos, Springer (2001).Google Scholar
  55. [55]
    T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes, Vol. 10, AMS (2003).Google Scholar
  56. [56]
    J. Chen, B. Guo and Y. Han, Sharp constant in nonlocal inequality and its applications to nonlocal Schrödinger equation with harmonic potential, Commun. Math. Sci. 7 (2009) 549.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    B. Craps, O. Evnin and J. Vanhoof, Ultraviolet asymptotics and singular dynamics of AdS perturbations, JHEP 10 (2015) 079 [arXiv:1508.04943] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    A.I. Aptekarev and D.N. Tulyakov, Asymptotics of L p -norms of Laguerre polynomials and entropic moments of D-dimensional oscillator, Keldysh Institute preprints (2015) 041 [http://mi.mathnet.ru/eng/ipmp/y2015/p41].
  59. [59]
    O. Evnin and P. Jai-akson, Detailed ultraviolet asymptotics for AdS scalar field perturbations, JHEP 04 (2016) 054 [arXiv:1602.05859] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Department of Physics, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  3. 3.Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay InstitutesBrusselsBelgium

Personalised recommendations