# A nonrelativistic limit for AdS perturbations

## Abstract

The familiar *c* → ∞ nonrelativistic limit converts the Klein-Gordon equation in Minkowski spacetime to the free Schrödinger equation, and the Einstein-massive-scalar system without a cosmological constant to the Schrödinger-Newton (SN) equation. In this paper, motivated by the problem of stability of Anti-de Sitter (AdS) spacetime, we examine how this limit is affected by the presence of a negative cosmological constant Λ. Assuming for consistency that the product Λ*c*^{2} tends to a negative constant as *c* → ∞, we show that the corresponding nonrelativistic limit is given by the SN system with an external harmonic potential which we call the Schrödinger-Newton-Hooke (SNH) system. We then derive the resonant approximation which captures the dynamics of small amplitude spherically symmetric solutions of the SNH system. This resonant system turns out to be much simpler than its general-relativistic version, which makes it amenable to analytic methods. Specifically, in four spatial dimensions, we show that the resonant system possesses a three-dimensional invariant subspace on which the dynamics is completely integrable and hence can be solved exactly. The evolution of the two-lowest-mode initial data (an extensively studied case for the original general-relativistic system), in particular, is described by this family of solutions.

## Keywords

Classical Theories of Gravity AdS-CFT Correspondence Conformal and W Symmetry Integrable Field Theories## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]P. Bizon and A. Rostworowski,
*On weakly turbulent instability of anti-de Sitter space*,*Phys. Rev. Lett.***107**(2011) 031102 [arXiv:1104.3702] [INSPIRE].ADSCrossRefGoogle Scholar - [2]G. Moschidis,
*A proof of the instability of AdS for the Einstein-massless Vlasov system*, arXiv:1812.04268 [INSPIRE]. - [3]G. Moschidis,
*A proof of the instability of AdS for the Einstein-null dust system with an inner mirror*, arXiv:1704.08681 [INSPIRE]. - [4]V. Balasubramanian, A. Buchel, S.R. Green, L. Lehner and S.L. Liebling,
*Holographic Thermalization, Stability of Anti-de Sitter Space and the Fermi-Pasta-Ulam Paradox*,*Phys. Rev. Lett.***113**(2014) 071601 [arXiv:1403.6471] [INSPIRE].ADSCrossRefGoogle Scholar - [5]B. Craps, O. Evnin and J. Vanhoof,
*Renormalization group, secular term resummation and AdS (in)stability*,*JHEP***10**(2014) 048 [arXiv:1407.6273] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [6]B. Craps, O. Evnin and J. Vanhoof,
*Renormalization, averaging, conservation laws and AdS (in)stability*,*JHEP***01**(2015) 108 [arXiv:1412.3249] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [7]P. Bizoń, M. Maliborski and A. Rostworowski,
*Resonant Dynamics and the Instability of Anti-de Sitter Spacetime*,*Phys. Rev. Lett.***115**(2015) 081103 [arXiv:1506.03519] [INSPIRE].ADSCrossRefGoogle Scholar - [8]S.R. Green, A. Maillard, L. Lehner and S.L. Liebling,
*Islands of stability and recurrence times in AdS*,*Phys. Rev.***D 92**(2015) 084001 [arXiv:1507.08261] [INSPIRE].ADSMathSciNetGoogle Scholar - [9]B. Craps and O. Evnin,
*AdS (in)stability: an analytic approach*,*Fortsch. Phys.***64**(2016) 336 [arXiv:1510.07836] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [10]P. Basu, C. Krishnan and A. Saurabh,
*A stochasticity threshold in holography and the instability of AdS*,*Int. J. Mod. Phys.***A 30**(2015) 1550128 [arXiv:1408.0624] [INSPIRE].ADSCrossRefGoogle Scholar - [11]P. Bizoń, B. Craps, O. Evnin, D. Hunik, V. Luyten and M. Maliborski,
*Conformal Flow on S*^{3}*and Weak Field Integrability in AdS*_{4},*Commun. Math. Phys.***353**(2017) 1179 [arXiv:1608.07227] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [12]P. Bizon, D. Hunik-Kostyra and D. Pelinovsky,
*Ground state of the conformal flow on*\( \mathbb{S} \)^{3}, arXiv:1706.07726 [INSPIRE]. - [13]B. Craps, O. Evnin and V. Luyten,
*Maximally rotating waves in AdS and on spheres*,*JHEP***09**(2017) 059 [arXiv:1707.08501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [14]P. Bizon, D. Hunik-Kostyra and D.E. Pelinovsky,
*Stationary states of the cubic conformal flow on*\( \mathbb{S} \)^{3}, arXiv:1807.00426 [INSPIRE]. - [15]P. Gérard and S. Grellier,
*The cubic Szegő equation*,*Annales Sci. Ecole Norm. Sup.***43**(2010) 761 [arXiv:0906.4540]. - [16]A.F. Biasi, J. Mas and A. Paredes,
*Delayed collapses of Bose-Einstein condensates in relation to anti-de Sitter gravity*,*Phys. Rev.***E 95**(2017) 032216 [arXiv:1610.04866] [INSPIRE].ADSGoogle Scholar - [17]H. Bacry and J. Levy-Leblond,
*Possible kinematics*,*J. Math. Phys.***9**(1968) 1605 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [18]J.-R. Derome and J.-G. Dubois,
*Hooke*’*s symmetries and non-relativistic cosmological kinematics*—*I*,*Nuovo Cim.***B 9**(1972) 351.ADSCrossRefGoogle Scholar - [19]J.-G. Dubois,
*Hooke*’*s symmetries and non-relativistic cosmological kinematics*—*II*,*Nuovo Cim.***B 15**(1973) 1.ADSCrossRefGoogle Scholar - [20]R. Aldrovandi, A.L. Barbosa, L.C.B. Crispino and J.G. Pereira,
*Non-Relativistic spacetimes with cosmological constant*,*Class. Quant. Grav.***16**(1999) 495 [gr-qc/9801100] [INSPIRE]. - [21]G.W. Gibbons and C.E. Patricot,
*Newton-Hooke space-times, Hpp waves and the cosmological constant*,*Class. Quant. Grav.***20**(2003) 5225 [hep-th/0308200] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [22]P. Germain, Z. Hani and L. Thomann,
*On the continuous resonant equation for NLS: I. Deterministic analysis*,*J. Math. Pur. App.***105**(2016) 131 [arXiv:1501.03760]. - [23]P. Germain and L. Thomann,
*On the high frequency limit of the LLL equation*,*Quart. Appl. Math.***74**(2016) 633 [arXiv:1509.09080].MathSciNetCrossRefzbMATHGoogle Scholar - [24]A. Biasi, P. Bizon, B. Craps and O. Evnin,
*Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates*,*Phys. Rev.***A 96**(2017) 053615 [arXiv:1705.00867] [INSPIRE].ADSCrossRefGoogle Scholar - [25]P. Gérard, P. Germain and L. Thomann,
*On the Cubic Lowest Landau Level Equation*, arXiv:1709.04276 [INSPIRE]. - [26]A. Biasi, P. Bizon, B. Craps and O. Evnin,
*Two infinite families of resonant solutions for the Gross-Pitaevskii equation*,*Phys. Rev.***E 98**(2018) 032222 [arXiv:1805.01775] [INSPIRE].ADSGoogle Scholar - [27]
- [28]V. Moroz and J. Van Schaftingen,
*A guide to the Choquard equation, J. Fixed Point Theor. App.***19**(2017) 773 [arXiv:1606.02158].MathSciNetCrossRefzbMATHGoogle Scholar - [29]
- [30]R. Ruffini and S. Bonazzola,
*Systems of selfgravitating particles in general relativity and the concept of an equation of state*,*Phys. Rev.***187**(1969) 1767 [INSPIRE].ADSCrossRefGoogle Scholar - [31]R. Penrose,
*On gravity*’*s role in quantum state reduction*,*Gen. Rel. Grav.***28**(1996) 581 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [32]I.M. Moroz, R. Penrose and P. Tod,
*Spherically symmetric solutions of the Schrödinger-Newton equations*,*Class. Quant. Grav.***15**(1998) 2733 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [33]J. Krieger, E. Lenzmann and P. Raphaël,
*On stability of pseudo-conformal blowup for L*_{2}*-critical Hartree NLS*,*Ann. Henri Poincaré***10**(2009) 1159 [arXiv:0808.2324].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [34]J. Krieger, Y. Martel and P. Raphaël,
*Two-soliton solutions to the three-dimensional gravitational Hartree equation*,*Commun. Pure Appl. Math.***62**(2009) 1501.MathSciNetCrossRefzbMATHGoogle Scholar - [35]J. Fröhlich and E. Lenzmann,
*Mean-field limit of quantum Bose gases and nonlinear Hartree equation*, talk at*Séminaire Équations aux Dérivées Partielles*, 2003-2004, Exp. No. XIX [math-ph/0409019]. - [36]R. Carles, N.J. Mauser and H.P. Stimming,
*(Semi)classical limit of the Hartree equation with harmonic potential SIAM J. Appl. Math.***66**(2005) 29.Google Scholar - [37]U. Niederer,
*The maximal kinematical invariance group of the harmonic oscillator*,*Helv. Phys. Acta***46**(1973) 191 [INSPIRE].Google Scholar - [38]K. Ohashi, T. Fujimori and M. Nitta,
*Conformal symmetry of trapped Bose-Einstein condensates and massive Nambu-Goldstone modes*,*Phys. Rev.***A 96**(2017) 051601 [arXiv:1705.09118] [INSPIRE].ADSCrossRefGoogle Scholar - [39]D. Giulini and A. Grossardt,
*The Schródinger-Newton equation as non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields*,*Class. Quant. Grav.***29**(2012) 215010 [arXiv:1206.4250] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [40]G. Fodor, P. Forgacs and M. Mezei,
*Boson stars and oscillatons in an inflationary universe*,*Phys. Rev.***D 82**(2010) 044043 [arXiv:1007.0388] [INSPIRE].ADSGoogle Scholar - [41]C.W. Misner, K.S. Thorne and J.A. Wheeler,
*Gravitation*, Freeman and Co (1973).Google Scholar - [42]R. Carles,
*Critical nonlinear Schrödinger equations with and without harmonic potential*,*Math. Mod. Meth. Appl. Sci.***12**(2002) 1513.MathSciNetCrossRefzbMATHGoogle Scholar - [43]C. Duval and S. Lazzarini,
*On the Schrödinger-Newton equation and its symmetries: a geometric view*,*Class. Quant. Grav.***32**(2015) 175006 [arXiv:1504.05042] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [44]T. Tao,
*A pseudoconformal compactification of the nonlinear Schrödinger equation and applications*,*New York J. Math.***15**(2009) 265 [math/0606254]. - [45]R. Carles,
*Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation*,*Ann. Inst. H. Poincaré***C 20**(2003) 501.ADSCrossRefzbMATHGoogle Scholar - [46]F.V. Dimitrakopoulos, B. Freivogel, M. Lippert and I.-S. Yang,
*Position space analysis of the AdS (in)stability problem*,*JHEP***08**(2015) 077 [arXiv:1410.1880] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [47]J.A. Murdock,
*Perturbations: Theory and Methods*, SIAM (1987).Google Scholar - [48]S. Kuksin and A. Maiocchi,
*The effective equation method*, in*New Approaches to Nonlinear Waves*, Springer (2016) [arXiv:1501.04175]. - [49]
- [50]O. Evnin and W. Piensuk,
*Quantum resonant systems, integrable and chaotic*, arXiv:1808.09173 [INSPIRE]. - [51]M.V. Berry and M. Tabor,
*Level clustering in the regular spectrum*,*Proc. Roy. Soc. Lond.***A 356**(1977) 375.Google Scholar - [52]O. Bohigas, M.J. Giannoni and C. Schmit,
*Characterization of chaotic quantum spectra and universality of level fluctuation laws*,*Phys. Rev. Lett.***52**(1984) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [53]T. Guhr, A. Müller-Groeling and H.A. Weidenmuller,
*Random matrix theories in quantum physics: Common concepts*,*Phys. Rept.***299**(1998) 189 [cond-mat/9707301] [INSPIRE]. - [54]F. Haake,
*Quantum signatures of chaos*, Springer (2001).Google Scholar - [55]T. Cazenave,
*Semilinear Schrödinger equations*, Courant Lecture Notes, Vol. 10, AMS (2003).Google Scholar - [56]J. Chen, B. Guo and Y. Han,
*Sharp constant in nonlocal inequality and its applications to nonlocal Schrödinger equation with harmonic potential*,*Commun. Math. Sci.***7**(2009) 549.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [57]B. Craps, O. Evnin and J. Vanhoof,
*Ultraviolet asymptotics and singular dynamics of AdS perturbations*,*JHEP***10**(2015) 079 [arXiv:1508.04943] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [58]A.I. Aptekarev and D.N. Tulyakov,
*Asymptotics of L*_{p}*-norms of Laguerre polynomials and entropic moments of D-dimensional oscillator*, Keldysh Institute preprints (2015) 041 [http://mi.mathnet.ru/eng/ipmp/y2015/p41]. - [59]O. Evnin and P. Jai-akson,
*Detailed ultraviolet asymptotics for AdS scalar field perturbations*,*JHEP***04**(2016) 054 [arXiv:1602.05859] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar