Advertisement

Journal of High Energy Physics

, 2018:108 | Cite as

R-current three-point functions in 4d \( \mathcal{N} \) = 1 superconformal theories

  • Andrea Manenti
  • Andreas StergiouEmail author
  • Alessandro Vichi
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

In 4d \( \mathcal{N} \) = 1 superconformal field theories (SCFTs) the R-symmetry current, the stress-energy tensor, and the supersymmetry currents are grouped into a single object, the Ferrara-Zumino multiplet. In this work we study the most general form of three-point functions involving two Ferrara-Zumino multiplets and a third generic multiplet. We solve the constraints imposed by conservation in superspace and show that non-trivial solutions can only be found if the third multiplet is R-neutral and transforms in suitable Lorentz representations. In the process we give a prescription for counting independent tensor structures in superconformal three-point functions. Finally, we set the Grassmann coordinates of the Ferrara-Zumino multiplets to zero and extract all three-point functions involving two R-currents and a third conformal primary. Our results pave the way for bootstrapping the correlation function of four R-currents in 4d \( \mathcal{N} \) = 1 SCFTs.

Keywords

Conformal and W Symmetry Conformal Field Theory Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

References

  1. [1]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Poland and D. Simmons-Duffin, The conformal bootstrap, Nat. Phys. 12 (2016) 535.CrossRefGoogle Scholar
  5. [5]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Fermion-Scalar Conformal Blocks, JHEP 04 (2016) 074 [arXiv:1511.01497] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    A.C. Echeverri, E. Elkhidir, D. Karateev and M. Serone, Deconstructing Conformal Blocks in 4D CFT, JHEP 08 (2015) 101 [arXiv:1505.03750] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A.C. Echeverri, E. Elkhidir, D. Karateev and M. Serone, Seed Conformal Blocks in 4D CFT, JHEP 02 (2016) 183 [arXiv:1601.05325] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Liendo, I. Ramirez and J. Seo, Stress-tensor OPE in \( \mathcal{N} \) = 2 superconformal theories, JHEP 02 (2016) 019 [arXiv:1509.00033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Vichi, Improved bounds for CFTs with global symmetries, JHEP 01 (2012) 162 [arXiv:1106.4037] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    J.-F. Fortin, K. Intriligator and A. Stergiou, Current OPEs in Superconformal Theories, JHEP 09 (2011) 071 [arXiv:1107.1721] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Berkooz, R. Yacoby and A. Zait, Bounds on \( \mathcal{N} \) = 1 superconformal theories with global symmetries, JHEP 08 (2014) 008 [Erratum ibid. 01 (2015) 132] [arXiv:1402.6068] [INSPIRE].
  14. [14]
    Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, \( \mathcal{N} \) = 1 superconformal blocks for general scalar operators, JHEP 08 (2014) 049 [arXiv:1404.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Z. Li and N. Su, The Most General 4 \( \mathcal{D} \) \( \mathcal{N} \) = 1 Superconformal Blocks for Scalar Operators, JHEP 05 (2016) 163 [arXiv:1602.07097] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    D. Li, D. Meltzer and A. Stergiou, Bootstrapping mixed correlators in 4D \( \mathcal{N} \) = 1 SCFTs, JHEP 07 (2017) 029 [arXiv:1702.00404] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Ferrara and B. Zumino, Transformation Properties of the Supercurrent, Nucl. Phys. B 87 (1975) 207 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D. Poland and A. Stergiou, Exploring the Minimal 4D \( \mathcal{N} \) = 1 SCFT, JHEP 12 (2015) 121 [arXiv:1509.06368] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    M. Buican and T. Nishinaka, Small deformation of a simple \( \mathcal{N} \) = 2 superconformal theory, Phys. Rev. D 94 (2016) 125002 [arXiv:1602.05545] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    D. Xie and K. Yonekura, Search for a Minimal N = 1 Superconformal Field Theory in 4D, Phys. Rev. Lett. 117 (2016) 011604 [arXiv:1602.04817] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J.-H. Park, \( \mathcal{N} \) = 1 superconformal symmetry in four-dimensions, Int. J. Mod. Phys. A 13 (1998) 1743 [hep-th/9703191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    H. Osborn, \( \mathcal{N} \) = 1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    D. Li and A. Stergiou, Two-point functions of conformal primary operators in \( \mathcal{N} \) = 1 superconformal theories, JHEP 10 (2014) 37 [arXiv:1407.6354] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    G.F. Cuomo, D. Karateev and P. Kravchuk, General Bootstrap Equations in 4D CFTs, JHEP 01 (2018) 130 [arXiv:1705.05401] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    E. Elkhidir, D. Karateev and M. Serone, General Three-Point Functions in 4D CFT, JHEP 01 (2015) 133 [arXiv:1412.1796] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Ferrara, R. Gatto and A.F. Grillo, Positivity Restrictions on Anomalous Dimensions, Phys. Rev. D 9 (1974) 3564 [INSPIRE].ADSGoogle Scholar
  28. [28]
    G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press (1992) [INSPIRE].
  30. [30]
    Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Flato and C. Fronsdal, Representations of Conformal Supersymmetry, Lett. Math. Phys. 8 (1984) 159 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    V.K. Dobrev and V.B. Petkova, All Positive Energy Unitary Irreducible Representations of Extended Conformal Supersymmetry, Phys. Lett. B 162 (1985) 127 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    P. Kravchuk and D. Simmons-Duffin, Counting Conformal Correlators, JHEP 02 (2018) 096 [arXiv:1612.08987] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    G. Mack, Convergence of Operator Product Expansions on the Vacuum in Conformal Invariant Quantum Field Theory, Commun. Math. Phys. 53 (1977) 155 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the space of 3D CFTs with a continuous global symmetry, arXiv:1705.04278 [INSPIRE].
  37. [37]
    A. Dymarsky, F. Kos, P. Kravchuk, D. Poland and D. Simmons-Duffin, The 3d Stress-Tensor Bootstrap, JHEP 02 (2018) 164 [arXiv:1708.05718] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, JHEP 06 (2016) 111 [arXiv:1603.03771] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Theoretical Physics Department, CERNGeneva 23Switzerland

Personalised recommendations