Advertisement

Journal of High Energy Physics

, 2018:92 | Cite as

Probing compressed dark sectors at 100 TeV in the dileptonic mono-Z channel

  • Rakhi Mahbubani
  • José ZuritaEmail author
Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

We examine the sensitivity at a future 100 TeV proton-proton collider to compressed dark sectors whose decay products are invisible due to below-threshold energies and/or small couplings to the Standard Model. Such a scenario could be relevant to models of WIMP dark matter, where the lightest New Physics state is an (isolated) electroweak multiplet whose lowest component is stable on collider timescales. We rely on the additional emission of a hard on-shell Z-boson decaying to leptons, a channel with low background systematics, and include a careful estimate of the real and fake backgrounds to this process in our analysis. We show that an integrated luminosity of 30 ab−1 would allow exclusion of a TeV-scale compressed dark sector with inclusive production cross section 0.3 fb, for 1% background systematic uncertainty and splittings below 5 GeV. This translates to exclusion of a pure higgsino (wino) multiplet with mass of 500 (970) GeV.

Keywords

Beyond Standard Model Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Wikipedia, May you live in interesting times .Google Scholar
  2. [2]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  3. [3]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the standard model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].
  4. [4]
    E. Bernreuther, J. Horak, T. Plehn and A. Butter, Actual physics behind mono-X, SciPost Phys. 5 (2018) 034 [arXiv:1805.11637] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].
  7. [7]
    CMS collaboration, Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at \( \sqrt{s}=13 \) TeV, JHEP 07 (2017) 014 [arXiv:1703.01651] [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for new phenomena in the Z(→ ℓℓ) + E Tmiss final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-056 (2016).Google Scholar
  9. [9]
    CMS collaboration, Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 78 (2018) 291 [arXiv:1711.00431] [INSPIRE].
  10. [10]
    ATLAS collaboration, Search for dark matter at \( \sqrt{s}=13 \) TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector, Eur. Phys. J. C 77 (2017) 393 [arXiv:1704.03848] [INSPIRE].
  11. [11]
    CMS collaboration, Search for new physics in the monophoton final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 10 (2017) 073 [arXiv:1706.03794] [INSPIRE].
  12. [12]
    S. Gori, S. Jung and L.-T. Wang, Cornering electroweakinos at the LHC, JHEP 10 (2013) 191 [arXiv:1307.5952] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Han et al., Probing light Higgsinos in natural SUSY from monojet signals at the LHC, JHEP 02 (2014) 049 [arXiv:1310.4274] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate Higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].ADSGoogle Scholar
  16. [16]
    D. Barducci et al., Uncovering natural supersymmetry via the interplay between the LHC and direct dark matter detection, JHEP 07 (2015) 066 [arXiv:1504.02472] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    H. Baer, A. Mustafayev and X. Tata, Monojets and mono-photons from light higgsino pair production at LHC14, Phys. Rev. D 89 (2014) 055007 [arXiv:1401.1162] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Cirelli, F. Sala and M. Taoso, Wino-like minimal dark matter and future colliders, JHEP 10 (2014) 033 [Erratum ibid. 01 (2015) 041] [arXiv:1407.7058] [INSPIRE].
  19. [19]
    A. Anandakrishnan, L.M. Carpenter and S. Raby, Degenerate gaugino mass region and mono-boson collider signatures, Phys. Rev. D 90 (2014) 055004 [arXiv:1407.1833] [INSPIRE].ADSGoogle Scholar
  20. [20]
    T. Han, D.L. Rainwater and D. Zeppenfeld, Drell-Yan plus missing energy as a signal for extra dimensions, Phys. Lett. B 463 (1999) 93 [hep-ph/9905423] [INSPIRE].
  21. [21]
    A. Alves and K. Sinha, Searches for dark matter at the LHC: a multivariate analysis in the mono-Z channel, Phys. Rev. D 92 (2015) 115013 [arXiv:1507.08294] [INSPIRE].ADSGoogle Scholar
  22. [22]
    N.F. Bell et al., Searching for dark matter at the LHC with a Mono-Z, Phys. Rev. D 86 (2012) 096011 [arXiv:1209.0231] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed dark sectors with disappearing charged tracks, JHEP 06 (2017) 119 [Erratum ibid. 10 (2017) 061] [arXiv:1703.05327] [INSPIRE].
  24. [24]
    J. Fan and M. Reece, In wino veritas? Indirect searches shed light on neutralino dark matter, JHEP 10 (2013) 124 [arXiv:1307.4400] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K. Kowalska and E.M. Sessolo, The discreet charm of higgsino dark matterA pocket review, Adv. High Energy Phys. 2018 (2018) 6828560 [arXiv:1802.04097] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    R. Krall and M. Reece, Last electroweak WIMP standing: pseudo-Dirac higgsino status and compact stars as future probes, Chin. Phys. C 42 (2018) 043105 [arXiv:1705.04843] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Baryakhtar et al., Dark kinetic heating of neutron stars and an infrared window on WIMPs, SIMPs and pure higgsinos, Phys. Rev. Lett. 119 (2017) 131801 [arXiv:1704.01577] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Gronau, C.N. Leung and J.L. Rosner, Extending limits on neutral heavy leptons, Phys. Rev. D 29 (1984) 2539 [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Antusch and O. Fischer, Testing sterile neutrino extensions of the Standard Model at future lepton colliders, JHEP 05 (2015) 053 [arXiv:1502.05915] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Long lived light scalars as probe of low scale seesaw models, Nucl. Phys. B 923 (2017) 179 [arXiv:1703.02471] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    J.C. Helo, M. Hirsch and Z.S. Wang, Heavy neutral fermions at the high-luminosity LHC, JHEP 07 (2018) 056 [arXiv:1803.02212] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].ADSGoogle Scholar
  34. [34]
    D. Curtin and C.B. Verhaaren, Discovering uncolored naturalness in exotic Higgs decays, JHEP 12 (2015) 072 [arXiv:1506.06141] [INSPIRE].ADSGoogle Scholar
  35. [35]
    R. Mahbubani and L. Senatore, The minimal model for dark matter and unification, Phys. Rev. D 73 (2006) 043510 [hep-ph/0510064] [INSPIRE].
  36. [36]
    S.D. Thomas and J.D. Wells, Phenomenology of massive vectorlike doublet leptons, Phys. Rev. Lett. 81 (1998) 34 [hep-ph/9804359] [INSPIRE].
  37. [37]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 487] [hep-ph/0406088] [INSPIRE].
  38. [38]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  40. [40]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  41. [41]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  42. [42]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    D. Yang and Q. Li, Probing the dark sector through mono-Z boson leptonic decays, JHEP 02 (2018) 090 [arXiv:1711.09845] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    CMS collaboration, Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 03 (2017) 061 [Erratum ibid. 1709 (2017) 106] [arXiv:1701.02042] [INSPIRE].
  48. [48]
    ATLAS collaboration, Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 776 (2018) 318 [arXiv:1708.09624] [INSPIRE].
  49. [49]
    G.F. Giudice, B. Gripaios and R. Mahbubani, Counting dark matter particles in LHC events, Phys. Rev. D 85 (2012) 075019 [arXiv:1108.1800] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Neubert, J. Wang and C. Zhang, Higher-order QCD predictions for dark matter production in mono-Z searches at the LHC, JHEP 02 (2016) 082 [arXiv:1509.05785] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.M. Lindert et al., Precise predictions for V + jets dark matter backgrounds, Eur. Phys. J. C 77 (2017) 829 [arXiv:1705.04664] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Becher and X. Garcia i Tormo, Addendum: electroweak Sudakov effects in W, Z and γ production at large transverse momentum, Phys. Rev. D 92 (2015) 073011 [arXiv:1509.01961] [INSPIRE].
  54. [54]
    L. Calibbi, A. Mariotti and P. Tziveloglou, Singlet-doublet model: dark matter searches and LHC constraints, JHEP 10 (2015) 116 [arXiv:1505.03867] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  56. [56]
    A. Alloul et al., FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  57. [57]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  58. [58]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].
  59. [59]
    XENON collaboration, E. Aprile et al., Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  60. [60]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  61. [61]
    G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [INSPIRE].
  62. [62]
    J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meissner, High-precision determination of the pion-nucleon σ term from Roy-Steiner equations, Phys. Rev. Lett. 115 (2015) 092301 [arXiv:1506.04142] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.M. Alarcon, L.S. Geng, J. Martin Camalich and J.A. Oller, The strangeness content of the nucleon from effective field theory and phenomenology, Phys. Lett. B 730 (2014) 342 [arXiv:1209.2870] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D 87 (2013) 114510 [arXiv:1301.1114] [INSPIRE].ADSGoogle Scholar
  66. [66]
    C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and blind spots for neutralino dark matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  68. [68]
    LZ collaboration, D.S. Akerib et al., LUX-ZEPLIN (LZ) conceptual design report, arXiv:1509.02910 [INSPIRE].
  69. [69]
    DARWIN collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  70. [70]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].ADSGoogle Scholar
  71. [71]
    R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    M. Mangano, Physics at future hadron colliders, talk given at Beyond Standard Model: where do we go from here? , October 1–5, Florence, Italy (2018).Google Scholar
  73. [73]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institut de Théorie des Phenomènes Physiques, EPFLLausanneSwitzerland
  2. 2.Institute for Nuclear Physics (IKP)Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  3. 3.Institute for Theoretical Particle Physics (TTP)Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations