Benchmarking the Inert Doublet Model for e+e colliders

Abstract

We present benchmarks for the Inert Doublet Model, a Two Higgs Doublet Model with a dark matter candidate. They are consistent with current constraints on direct detection, including the most recent bounds from the XENON1T experiment and relic density of dark matter, as well as with known collider and low-energy limits. We focus on parameter choices that promise detectable signals at lepton colliders via pair-production of H+H and HA. For these we choose a large variety of benchmark points with different kinematic features, leading to distinctly different final states in order to cover the large variety of collider signatures that can result from the model.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    C. Tancredi, ATLAS + ALICE highlights, presented at ICHEP2018, Seoul Korea, July 2018.

  2. [2]

    R. Shahram, CMS + LHCb highlights, presented at ICHEP2018, Seoul Korea, July 2018.

  3. [3]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  4. [4]

    N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

  7. [7]

    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].

  8. [8]

    L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  9. [9]

    E.M. Dolle and S. Su, The Inert Dark Matter, Phys. Rev. D 80 (2009) 055012 [arXiv:0906.1609] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    A. Goudelis, B. Herrmann and O. Stal, Dark matter in the Inert Doublet Model after the discovery of a Higgs-like boson at the LHC, JHEP 09 (2013) 106 [arXiv:1303.3010] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    M. Krawczyk, D. Sokolowska, P. Swaczyna and B. Swiezewska, Constraining Inert Dark Matter by R γγ and WMAP data, JHEP 09 (2013) 055 [arXiv:1305.6266] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    E. Lundstrom, M. Gustafsson and J. Edsjo, The Inert Doublet Model and LEP II Limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    E. Dolle, X. Miao, S. Su and B. Thomas, Dilepton Signals in the Inert Doublet Model, Phys. Rev. D 81 (2010) 035003 [arXiv:0909.3094] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the Inert Doublet Model and the Role of multileptons at the LHC, Phys. Rev. D 86 (2012) 075019 [arXiv:1206.6316] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    M. Aoki, S. Kanemura and H. Yokoya, Reconstruction of Inert Doublet Scalars at the International Linear Collider, Phys. Lett. B 725 (2013) 302 [arXiv:1303.6191] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    S.-Y. Ho and J. Tandean, Probing Scotogenic Effects in e + e Colliders, Phys. Rev. D 89 (2014) 114025 [arXiv:1312.0931] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    A. Arhrib, Y.-L.S. Tsai, Q. Yuan and T.-C. Yuan, An Updated Analysis of Inert Higgs Doublet Model in light of the Recent Results from LUX, PLANCK, AMS-02 and LHC, JCAP 06 (2014) 030 [arXiv:1310.0358] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    A. Arhrib, R. Benbrik and N. Gaur, Hγγ in Inert Higgs Doublet Model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    B. Swiezewska and M. Krawczyk, Diphoton rate in the inert doublet model with a 125 GeV Higgs boson, Phys. Rev. D 88 (2013) 035019 [arXiv:1212.4100] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    I.F. Ginzburg, Measuring mass and spin of Dark Matter particles with the aid energy spectra of single lepton and dijet at the e + e Linear Collider, J. Mod. Phys. 5 (2014) 1036 [arXiv:1410.0869] [INSPIRE].

    Article  Google Scholar 

  21. [21]

    G. Bélanger, B. Dumont, A. Goudelis, B. Herrmann, S. Kraml and D. Sengupta, Dilepton constraints in the Inert Doublet Model from Run 1 of the LHC, Phys. Rev. D 91 (2015) 115011 [arXiv:1503.07367] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    N. Blinov, J. Kozaczuk, D.E. Morrissey and A. de la Puente, Compressing the Inert Doublet Model, Phys. Rev. D 93 (2016) 035020 [arXiv:1510.08069] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    A. Ilnicka, M. Krawczyk and T. Robens, Inert Doublet Model in light of LHC Run I and astrophysical data, Phys. Rev. D 93 (2016) 055026 [arXiv:1508.01671] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    M. Hashemi, M. Krawczyk, S. Najjari and A.F. Żarnecki, Production of Inert Scalars at the high energy e + e colliders, JHEP 02 (2016) 187 [arXiv:1512.01175] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    P. Poulose, S. Sahoo and K. Sridhar, Exploring the Inert Doublet Model through the dijet plus missing transverse energy channel at the LHC, Phys. Lett. B 765 (2017) 300 [arXiv:1604.03045] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    A. Datta, N. Ganguly, N. Khan and S. Rakshit, Exploring collider signatures of the inert Higgs doublet model, Phys. Rev. D 95 (2017) 015017 [arXiv:1610.00648] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    S. Kanemura, M. Kikuchi and K. Sakurai, Testing the dark matter scenario in the inert doublet model by future precision measurements of the Higgs boson couplings, Phys. Rev. D 94 (2016) 115011 [arXiv:1605.08520] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    A.G. Akeroyd et al., Prospects for charged Higgs searches at the LHC, Eur. Phys. J. C 77 (2017) 276 [arXiv:1607.01320] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    N. Wan, N. Li, B. Zhang, H. Yang, M.-F. Zhao, M. Song et al., Searches for Dark Matter via Mono-W Production in Inert Doublet Model at the LHC, Commun. Theor. Phys. 69 (2018) 617 [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    A. Ilnicka, T. Robens and T. Stefaniak, Constraining Extended Scalar Sectors at the LHC and beyond, Mod. Phys. Lett. A 33 (2018) 1830007 [arXiv:1803.03594] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    A. Belyaev, T.R. Fernandez Perez Tomei, P.G. Mercadante, C.S. Moon, S. Moretti, S.F. Novaes et al., Advancing LHC Probes of Dark Matter from the Inert 2-Higgs Doublet Model with the Mono-jet Signal, arXiv:1809.00933 [INSPIRE].

  32. [32]

    L. Chuzhoy and E.W. Kolb, Reopening the window on charged dark matter, JCAP 07 (2009) 014 [arXiv:0809.0436] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    LHC Higgs Cross Section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

  34. [34]

    A. Belyaev, G. Cacciapaglia, I.P. Ivanov, F. Rojas-Abatte and M. Thomas, Anatomy of the Inert Two Higgs Doublet Model in the light of the LHC and non-LHC Dark Matter Searches, Phys. Rev. D 97 (2018) 035011 [arXiv:1612.00511] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    S. Nie and M. Sher, Vacuum stability bounds in the two Higgs doublet model, Phys. Lett. B 449 (1999) 89 [hep-ph/9811234] [INSPIRE].

  36. [36]

    B. Swiezewska, Inert scalars and vacuum metastability around the electroweak scale, JHEP 07 (2015) 118 [arXiv:1503.07078] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting Ws and Zs, Nucl. Phys. B 261 (1985) 379 [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].

  39. [39]

    I.F. Ginzburg, K.A. Kanishev, M. Krawczyk and D. Sokolowska, Evolution of Universe to the present inert phase, Phys. Rev. D 82 (2010) 123533 [arXiv:1009.4593] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    ATLAS, CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].

  41. [41]

    CMS collaboration, Measurements of Higgs boson properties from on-shell and off-shell production in the four-lepton final state, CMS-PAS-HIG-18-002.

  42. [42]

    ATLAS, CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

  43. [43]

    P. Bechtle, S. Heinemeyer, O. St al, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].

  44. [44]

    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  45. [45]

    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].

  49. [49]

    D. Eriksson, J. Rathsman and O. Stål, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].

  50. [50]

    Gfitter Group collaboration, M. Baak, J. Cúth, J. Haller, A. Hoecker, R. Kogler, K. Mönig et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].

  51. [51]

    A. Pierce and J. Thaler, Natural Dark Matter from an Unnatural Higgs Boson and New Colored Particles at the TeV Scale, JHEP 08 (2007) 026 [hep-ph/0703056] [INSPIRE].

  52. [52]

    J. Heisig, S. Kraml and A. Lessa, Constraining new physics with searches for long-lived particles: Implementation into SModelS, arXiv:1808.05229 [INSPIRE].

  53. [53]

    CMS collaboration, Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 325 [arXiv:1502.02522] [INSPIRE].

  54. [54]

    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  55. [55]

    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].

  56. [56]

    P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein et al., HiggsBounds-4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].

  57. [57]

    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J. C 75 (2015) 421 [arXiv:1507.06706] [INSPIRE].

  58. [58]

    XENON collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  59. [59]

    A. Belyaev, J. Blandford and D. Locke, Phenodata database, Jan. 2017, https://hepmdb.soton.ac.uk/phenodata.

  60. [60]

    DES, Fermi-LAT collaborations, A. Albert et al., Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].

  61. [61]

    F.S. Queiroz and C.E. Yaguna, The CTA aims at the Inert Doublet Model, JCAP 02 (2016) 038 [arXiv:1511.05967] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    Fermi-LAT collaboration, M. Ackermann et al., The Fermi Galactic Center GeV Excess and Implications for Dark Matter, Astrophys. J. 840 (2017) 43 [arXiv:1704.03910] [INSPIRE].

  63. [63]

    B. Eiteneuer, A. Goudelis and J. Heisig, The inert doublet model in the light of Fermi-LAT gamma-ray data: a global fit analysis, Eur. Phys. J. C 77 (2017) 624 [arXiv:1705.01458] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    D. Barducci, G. Bélanger, J. Bernon, F. Boudjema, J. Da Silva, S. Kraml et al., Collider limits on new physics within MicrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327 [arXiv:1606.03834] [INSPIRE].

  65. [65]

    L. Lopez Honorez and C.E. Yaguna, A new viable region of the inert doublet model, JCAP 01 (2011) 002 [arXiv:1011.1411] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    B. Świeżewska, Yukawa independent constraints for two-Higgs-doublet models with a 125 GeV Higgs boson, Phys. Rev. D 88 (2013) 055027 [Erratum ibid. D 88 (2013) 119903] [arXiv:1209.5725] [INSPIRE].

  67. [67]

    CLICdp, CLIC collaborations, M.J. Boland et al., Updated baseline for a staged Compact Linear Collider, (2016), https://doi.org/10.5170/CERN-2016-004.

  68. [68]

    F. Staub, SARAH 3.2: Dirac Gauginos, UFO output and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].

  69. [69]

    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  70. [70]

    F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780 [arXiv:1503.04200] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  71. [71]

    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].

  72. [72]

    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].

  73. [73]

    M. Moretti, T. Ohl and J. Reuter, OMega: An Optimizing matrix element generator, hep-ph/0102195 [INSPIRE].

  74. [74]

    W. Kilian, T. Ohl and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].

  76. [76]

    B. Dutta, G. Palacio, J.D. Ruiz-Alvarez and D. Restrepo, Vector Boson Fusion in the Inert Doublet Model, Phys. Rev. D 97 (2018) 055045 [arXiv:1709.09796] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    T. Robens, IDM benchmarks for the LHC at 13 and 27 TeV, talk given at the Higgs Cross Section working group WG3 subgroup meeting, 24 October 2018.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tania Robens.

Additional information

ArXiv ePrint: 1809.07712

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalinowski, J., Kotlarski, W., Robens, T. et al. Benchmarking the Inert Doublet Model for e+e colliders. J. High Energ. Phys. 2018, 81 (2018). https://doi.org/10.1007/JHEP12(2018)081

Download citation

Keywords

  • Beyond Standard Model
  • Higgs Physics