Advertisement

Journal of High Energy Physics

, 2018:73 | Cite as

SYK/AdS duality with Yang-Baxter deformations

  • Arindam Lala
  • Dibakar Roychowdhury
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, based on the notion of SYK/AdS duality we explore the effects of Yang-Baxter (YB) deformations on the SYK spectrum at strong coupling. In the first part of our analysis, we explore the consequences of YB deformations through the Kaluza-Klein (KK) reduction on (AdS2)η × (S1)/Z2. It turns out that the YB effects (on the SYK spectrum) starts showing off at quadratic order in 1/J expansion. For the rest of the analysis, we provide an interpretation for the YB deformations in terms of bi-local/collective field excitations of the SYK model. Using large N techniques, we evaluate the effective action upto quadratic order in the fluctuations and estimate 1/J2 corrections to the correlation function at strong coupling.

Keywords

2D Gravity AdS-CFT Correspondence Gauge-gravity correspondence 1/N Expansion 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  2. [2]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Sachdev, Strange metals and the AdS/CFT correspondence, J. Stat. Mech. 1011 (2010) P11022 [arXiv:1010.0682] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    A. Kitaev, A simple model of quantum holography, talk given at KITP strings seminar and Entanglementprogram, Santa Barbara, U.S.A., 12 February, 7 April, and 27 May 2015.Google Scholar
  5. [5]
    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk given at Fundamental Physics Prize Symposium, Santa Barbara, U.S.A., 10 November 2014.Google Scholar
  6. [6]
    S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [Addendum ibid. D 95 (2017) 069904] [arXiv:1610.08917] [INSPIRE].
  10. [10]
    J. Yoon, Supersymmetric SYK Model: Bi-local Collective Superfield/Supermatrix Formulation, JHEP 10 (2017) 172 [arXiv:1706.05914] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
  12. [12]
    A.M. García-García and J.J.M. Verbaarschot, Analytical Spectral Density of the Sachdev-Ye-Kitaev Model at finite N, Phys. Rev. D 96 (2017) 066012 [arXiv:1701.06593] [INSPIRE].
  13. [13]
    A. Jevicki, K. Suzuki and J. Yoon, Bi-Local Holography in the SYK Model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Jevicki and K. Suzuki, Bi-Local Holography in the SYK Model: Perturbations, JHEP 11 (2016) 046 [arXiv:1608.07567] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    D.J. Gross and V. Rosenhaus, A Generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D.J. Gross and V. Rosenhaus, The Bulk Dual of SYK: Cubic Couplings, JHEP 05 (2017) 092 [arXiv:1702.08016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    C. Krishnan, S. Sanyal and P.N. Bala Subramanian, Quantum Chaos and Holographic Tensor Models, JHEP 03 (2017) 056 [arXiv:1612.06330] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher Dimensional Generalizations of the SYK Model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    C. Peng, M. Spradlin and A. Volovich, Correlators in the \( \mathcal{N} \) = 2 Supersymmetric SYK Model, JHEP 10 (2017) 202 [arXiv:1706.06078] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    C. Peng, M. Spradlin and A. Volovich, A Supersymmetric SYK-like Tensor Model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M. Taylor, Generalized conformal structure, dilaton gravity and SYK, JHEP 01 (2018) 010 [arXiv:1706.07812] [INSPIRE].ADSzbMATHGoogle Scholar
  23. [23]
    S. Förste, J. Kames-King and M. Wiesner, Towards the Holographic Dual of N = 2 SYK, JHEP 03 (2018) 028 [arXiv:1712.07398] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    V. Rosenhaus, An introduction to the SYK model, arXiv:1807.03334 [INSPIRE].
  25. [25]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  32. [32]
    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
  33. [33]
    G. Mandal, P. Nayak and S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, JHEP 11 (2017) 046 [arXiv:1702.04266] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S.R. Das, A. Jevicki and K. Suzuki, Three Dimensional View of the SYK/AdS Duality, JHEP 09 (2017) 017 [arXiv:1704.07208] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    S.R. Das, A. Ghosh, A. Jevicki and K. Suzuki, Three Dimensional View of Arbitrary q SYK models, JHEP 02 (2018) 162 [arXiv:1711.09839] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S.R. Das, A. Ghosh, A. Jevicki and K. Suzuki, Space-Time in the SYK Model, JHEP 07 (2018) 184 [arXiv:1712.02725] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    H. Kyono, S. Okumura and K. Yoshida, Deformations of the Almheiri-Polchinski model, JHEP 03 (2017) 173 [arXiv:1701.06340] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    H. Kyono, S. Okumura and K. Yoshida, Comments on 2D dilaton gravity system with a hyperbolic dilaton potential, Nucl. Phys. B 923 (2017) 126 [arXiv:1704.07410] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    S. Okumura and K. Yoshida, Weyl transformation and regular solutions in a deformed Jackiw-Teitelboim model, Nucl. Phys. B 933 (2018) 234 [arXiv:1801.10537] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    A. Jevicki and B. Sakita, Collective Field Approach to the Large N Limit: Euclidean Field Theories, Nucl. Phys. B 185 (1981) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S.R. Das and A. Jevicki, Large N collective fields and holography, Phys. Rev. D 68 (2003) 044011 [hep-th/0304093] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP 12 (2002) 051 [hep-th/0210095] [INSPIRE].
  45. [45]
    C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys. 50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].
  46. [46]
    F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models, JHEP 11 (2013) 192 [arXiv:1308.3581] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    T. Matsumoto and K. Yoshida, Yang-Baxter σ-models based on the CYBE, Nucl. Phys. B 893 (2015) 287 [arXiv:1501.03665] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    T. Araujo, I. Bakhmatov, E. Ó. Colgáin, J. Sakamoto, M.M. Sheikh-Jabbari and K. Yoshida, Yang-Baxter σ-models, conformal twists and noncommutative Yang-Mills theory, Phys. Rev. D 95 (2017) 105006 [arXiv:1702.02861] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  49. [49]
    I. Bakhmatov, E. Ó. Colgáin, M.M. Sheikh-Jabbari and H. Yavartanoo, Yang-Baxter Deformations Beyond Coset Spaces (a slick way to do TsT), JHEP 06 (2018) 161 [arXiv:1803.07498] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    T. Kameyama and K. Yoshida, Generalized quark-antiquark potentials from a q-deformed AdS 5×S 5 background, PTEP 2016 (2016) 063B01 [arXiv:1602.06786] [INSPIRE].
  51. [51]
    T. Araujo, I. Bakhmatov, E. Ó. Colgáin, J.-i. Sakamoto, M.M. Sheikh-Jabbari and K. Yoshida, Conformal twists, Yang-Baxter σ-models & holographic noncommutativity, J. Phys. A 51 (2018) 235401 [arXiv:1705.02063] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  52. [52]
    N. Beisert, W. Galleas and T. Matsumoto, A Quantum Affine Algebra for the Deformed Hubbard Chain, J. Phys. A 45 (2012) 365206 [arXiv:1102.5700] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  53. [53]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 superYang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, Jordanian deformations of the AdS 5 × S 5 superstring, JHEP 04 (2014) 153 [arXiv:1401.4855] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5 × S 5 superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    F. Delduc, M. Magro and B. Vicedo, Derivation of the action and symmetries of the q-deformed AdS 5 × S 5 superstring, JHEP 10 (2014) 132 [arXiv:1406.6286] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    T. Kameyama and K. Yoshida, A new coordinate system for q-deformed AdS 5× S 5 and classical string solutions, J. Phys. A 48 (2015) 075401 [arXiv:1408.2189] [INSPIRE].ADSzbMATHGoogle Scholar
  58. [58]
    T. Kameyama and K. Yoshida, Minimal surfaces in q-deformed AdS 5×S 5 with Poincaré coordinates, J. Phys. A 48 (2015) 245401 [arXiv:1410.5544] [INSPIRE].ADSzbMATHGoogle Scholar
  59. [59]
    D. Roychowdhury, Stringy correlations on deformed AdS 3 × S 3, JHEP 03 (2017) 043 [arXiv:1702.01405] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Instituto de Física, Pontificia Universidad Católica de ValparaísoValparaisoChile
  2. 2.Department of PhysicsSwansea UniversitySwanseaUnited Kingdom

Personalised recommendations