Advertisement

Journal of High Energy Physics

, 2018:71 | Cite as

Amplitudes involving massive states using pure spinor formalism

  • Subhroneel ChakrabartiEmail author
  • Sitender Pratap Kashyap
  • Mritunjay Verma
Open Access
Regular Article - Theoretical Physics

Abstract

Same amplitudes evaluated independently using RNS and pure spinor formalism are expected to agree. While for massless states, this fact has been firmly established, for massive states such an explicit check has been lacking so far. We compute all massless-massless-massive 3-point functions in open supertrings in pure spinor formalism for the first massive states and compare them with the corresponding RNS results. We fix the normalization of the vertex operators of the massive states by comparing same set of 3-point functions for a fixed ordering in the two formalisms. Once fixed, the subsequent 3-point functions for each inequivalent ordering match exactly. This extends the explicit demonstration of equivalence of pure spinor and RNS formalism from massless states to first massive states.

Keywords

Superstrings and Heterotic Strings Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089 [hep-th/0509120] [INSPIRE].
  3. [3]
    N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    N. Berkovits, Cohomology in the pure spinor formalism for the superstring, JHEP 09 (2000) 046 [hep-th/0006003] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Berkovits, Relating the RNS and pure spinor formalisms for the superstring, JHEP 08 (2001) 026 [hep-th/0104247] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    N. Berkovits and D.Z. Marchioro, Relating the Green-Schwarz and pure spinor formalisms for the superstring, JHEP 01 (2005) 018 [hep-th/0412198] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    N. Berkovits, Super-Poincaré covariant two-loop superstring amplitudes, JHEP 01 (2006) 005 [hep-th/0503197] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Berkovits and C.R. Mafra, Some superstring amplitude computations with the non-minimal pure spinor formalism, JHEP 11 (2006) 079 [hep-th/0607187] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    N. Berkovits and C.R. Mafra, Equivalence of two-loop superstring amplitudes in the pure spinor and RNS formalisms, Phys. Rev. Lett. 96 (2006) 011602 [hep-th/0509234] [INSPIRE].
  10. [10]
    H. Gomez and C.R. Mafra, The overall coefficient of the two-loop superstring amplitude using pure spinors, JHEP 05 (2010) 017 [arXiv:1003.0678] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J.P. Harnad and S. Shnider, Constraints and field equations for ten dimensional supergravity Yang-Mills, Commun. Math. Phys. 106 (1986) 183.ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    H. Ooguri, J. Rahmfeld, H. Robins and J. Tannenhauser, Holography in superspace, JHEP 07 (2000) 045 [hep-th/0007104].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    G. Policastro and D. Tsimpis, R 4 purified, Class. Quant. Grav. 23 (2006) 4753 [hep-th/0603165].
  14. [14]
    N. Berkovits and O. Chandía, Massive superstring vertex operator in D = 10 superspace, JHEP 08 (2002) 040 [hep-th/0204121] [INSPIRE].
  15. [15]
    S. Chakrabarti, S.P. Kashyap and M. Verma, Theta expansion of first massive vertex operator in pure spinor, JHEP 01 (2018) 019 [arXiv:1706.01196] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    K. Peeters, A field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs/0608005] [INSPIRE].
  17. [17]
    K. Peeters, Introducing Cadabra: a symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE].
  18. [18]
    C.R. Mafra, Superstring scattering amplitudes with the pure spinor formalism, Ph.D. thesis, Instituto de Física Teórica, Sao Paulo, Brasil (2008), arXiv:0902.1552 [INSPIRE].
  19. [19]
    K.-S. Suna, X.-M. Ding, F. Sun and H.-B. Zhang, Computations of superstring amplitudes in pure spinor formalism via Cadabra, arXiv:1607.00463 [INSPIRE].
  20. [20]
    C. Stahn, Fermionic superstring loop amplitudes in the pure spinor formalism, JHEP 05 (2007) 034 [arXiv:0704.0015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    U. Gran, GAMMA: a Mathematica package for performing gamma matrix algebra and Fierz transformations in arbitrary dimensions, hep-th/0105086 [INSPIRE].
  22. [22]
    S. Chakrabarti, S.P. Kashyap and M. Verma, 1-loop mass renormalization for first massive states of SO(32) heterotic string using pure spinor formalism, to appear.Google Scholar
  23. [23]
    S. Chakrabarti, S.P. Kashyap and M. Verma, Integrated massive vertex operator in pure spinor formalism, JHEP 10 (2018) 147 [arXiv:1802.04486] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    D. Haertl and O. Schlotterer, Higher loop spin field correlators in various dimensions, Nucl. Phys. B 849 (2011) 364 [arXiv:1011.1249] [INSPIRE].
  25. [25]
    O. Schlotterer, Scattering amplitudes in open superstring theory, Ph.D. thesis, Ludwig-Maximilians-Universität, München, Germany (2012).Google Scholar
  26. [26]
    T. Bargheer, J.A. Minahan and R. Pereira, Computing three-point functions for short operators, JHEP 03 (2014) 096 [arXiv:1311.7461] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    I.G. Koh, W. Troost and A. Van Proeyen, Covariant higher spin vertex operators in the Ramond sector, Nucl. Phys. B 292 (1987) 201 [INSPIRE].
  28. [28]
    Y. Tanii and Y. Watabiki, Vertex functions in the path integral formalism of open string theories, Int. J. Mod. Phys. A 3 (1988) 2601 [INSPIRE].
  29. [29]
    A. Sen, Reality of superstring field theory action, JHEP 11 (2016) 014 [arXiv:1606.03455] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    O. Schlotterer, Higher spin scattering in superstring theory, Nucl. Phys. B 849 (2011) 433 [arXiv:1011.1235] [INSPIRE].
  31. [31]
    E. Witten, Twistor-like transform in ten-dimensions, Nucl. Phys. B 266 (1986) 245 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Harish-Chandra Research Institute, HBNIAllahabadIndia
  2. 2.International Centre for Theoretical SciencesBengaluruIndia

Personalised recommendations