Advertisement

Journal of High Energy Physics

, 2018:68 | Cite as

Bulk locality and cooperative flows

  • Veronika E. Hubeny
Open Access
Regular Article - Theoretical Physics

Abstract

We use the ‘bit thread’ formulation of holographic entanglement entropy to highlight the distinction between the universally-valid strong subadditivity and the more restrictive relation called monogamy of mutual information (MMI), known to hold for geometrical states (i.e. states of holographic theories with gravitational duals describing a classical bulk geometry). In particular, we provide a novel proof of MMI, using bit threads directly. To this end, we present an explicit geometrical construction of cooperative flows which we build out of disjoint thread bundles. We conjecture that our method applies in a wide class of configurations, including ones with non-trivial topology, causal structure, and time dependence. The explicit nature of the construction reveals that MMI is more deeply rooted in bulk locality than is the case for strong subadditivity.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Headrick, General properties of holographic entanglement entropy, JHEP 03 (2014) 085 [arXiv:1312.6717] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully and M. Walter, The Holographic Entropy Cone, JHEP 09 (2015) 130 [arXiv:1505.07839] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P. Hayden, M. Headrick and A. Maloney, Holographic Mutual Information is Monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].
  4. [4]
    E. Witten, A Mini-Introduction To Information Theory, arXiv:1805.11965 [INSPIRE].
  5. [5]
    T. Takayanagi, T. Ugajin and K. Umemoto, Towards an Entanglement Measure for Mixed States in CFTs Based on Relative Entropy, JHEP 10 (2018) 166 [arXiv:1807.09448] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].
  9. [9]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Headrick and T. Takayanagi, A Holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].
  11. [11]
    A.C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Freedman and M. Headrick, Bit threads and holographic entanglement, Commun. Math. Phys. 352 (2017) 407 [arXiv:1604.00354] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Headrick and V.E. Hubeny, Riemannian and Lorentzian flow-cut theorems, Class. Quant. Grav. 35 (2018) 10 [arXiv:1710.09516] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S.X. Cui, P. Hayden, T. He, M. Headrick, B. Stoica and M. Walter, Bit Threads and Holographic Monogamy, arXiv:1808.05234 [INSPIRE].
  15. [15]
    V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux, JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Nogueira, Extremal Surfaces in Asymptotically AdS Charged Boson Stars Backgrounds, Phys. Rev. D 87 (2013) 106006 [arXiv:1301.4316] [INSPIRE].
  17. [17]
    S.A. Gentle and M. Rangamani, Holographic entanglement and causal information in coherent states, JHEP 01 (2014) 120 [arXiv:1311.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    J. Couch, S. Eccles, T. Jacobson and P. Nguyen, Holographic Complexity and Volume, JHEP 11 (2018) 044 [arXiv:1807.02186] [INSPIRE].
  20. [20]
    V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Headrick and V.E. Hubeny, Covariant bit threads, to appear.Google Scholar
  22. [22]
    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Rangamani and M. Rota, Entanglement structures in qubit systems, J. Phys. A 48 (2015) 385301 [arXiv:1505.03696] [INSPIRE].
  24. [24]
    T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    J. Harper, M. Headrick and A. Rolph, Bit Threads in Higher Curvature Gravity, arXiv:1807.04294 [INSPIRE].
  26. [26]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].
  27. [27]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
  28. [28]
    B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral Geometry and Holography, JHEP 10 (2015) 175 [arXiv:1505.05515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
  30. [30]
    V.E. Hubeny, M. Rangamani and M. Rota, Holographic entropy relations, Fortsch. Phys. 66 (2018) 1800067 [arXiv:1808.07871] [INSPIRE].
  31. [31]
    K. Umemoto and T. Takayanagi, Entanglement of purification through holographic duality, Nature Phys. 14 (2018) 573 [arXiv:1708.09393] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for Quantum Mathematics and Physics (QMAP), Department of PhysicsUniversity of CaliforniaDavisU.S.A.

Personalised recommendations