Advertisement

Journal of High Energy Physics

, 2018:67 | Cite as

The Smeared Null Energy Condition

  • Ben Freivogel
  • Dimitrios KrommydasEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a new bound on a weighted average of the null energy along a finite portion of a null geodesic: the Smeared Null Energy Condition (SNEC). We believe our bound is valid on scales small compared to the radius of curvature in any quantum field theory that is consistently coupled to gravity. If correct, our bound implies that regions of negative energy density are never strongly gravitating, and that isolated regions of negative energy are forbidden.

Keywords

Field Theories in Higher Dimensions Spacetime Singularities Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Parikh and J.P. van der Schaar, Derivation of the Null Energy Condition, Phys. Rev. D 91 (2015) 084002 [arXiv:1406.5163] [INSPIRE].
  2. [2]
    M. Parikh, Two Roads to the Null Energy Condition, Int. J. Mod. Phys. D 24 (2015) 1544030 [arXiv:1512.03448] [INSPIRE].
  3. [3]
    F.J. Tipler, Energy conditions and spacetime singularities, Phys. Rev. D 17 (1978) 2521 [INSPIRE].
  4. [4]
    E. Curiel, A Primer on Energy Conditions, Einstein Stud. 13 (2017) 43 [arXiv:1405.0403] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    C.J. Fewster, Lectures on quantum energy inequalities, arXiv:1208.5399 [INSPIRE].
  6. [6]
    A.R. Levine, A Holographic Dual of the Quantum Inequalities, arXiv:1605.05751 [INSPIRE].
  7. [7]
    C.J. Fewster and T.A. Roman, On wormholes with arbitrarily small quantities of exotic matter, Phys. Rev. D 72 (2005) 044023 [gr-qc/0507013] [INSPIRE].
  8. [8]
    N. Kaloper, M. Kleban, A. Lawrence and M.S. Sloth, Large Field Inflation and Gravitational Entropy, Phys. Rev. D 93 (2016) 043510 [arXiv:1511.05119] [INSPIRE].
  9. [9]
    A. Borde, Geodesic focusing, energy conditions and singularities, Class. Quant. Grav. 4 (1987) 343 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R.M. Wald and U. Yurtsever, General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved space-time, Phys. Rev. D 44 (1991) 403 [INSPIRE].
  11. [11]
    E.-A. Kontou, Averaged null energy condition and quantum inequalities in curved spacetime, Ph.D. thesis, Tufts University, 2015, arXiv:1507.06299 [INSPIRE].
  12. [12]
    N. Graham and K.D. Olum, Achronal averaged null energy condition, Phys. Rev. D 76 (2007) 064001 [arXiv:0705.3193] [INSPIRE].
  13. [13]
    W.R. Kelly and A.C. Wall, Holographic proof of the averaged null energy condition, Phys. Rev. D 90 (2014) 106003 [Erratum ibid. D 91 (2015) 069902] [arXiv:1408.3566] [INSPIRE].
  14. [14]
    T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality, JHEP 07 (2017) 066 [arXiv:1610.05308] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    L.H. Ford and T.A. Roman, Averaged energy conditions and quantum inequalities, Phys. Rev. D 51 (1995) 4277 [gr-qc/9410043] [INSPIRE].
  17. [17]
    F. Rahaman, M. Kalam and S. Chakraborty, Wormholes with varying equation of state parameter, Acta Phys. Polon. B 40 (2009) 25 [gr-qc/0701032] [INSPIRE].
  18. [18]
    M. Visser, S. Kar and N. Dadhich, Traversable wormholes with arbitrarily small energy condition violations, Phys. Rev. Lett. 90 (2003) 201102 [gr-qc/0301003] [INSPIRE].
  19. [19]
    F.S.N. Lobo, Stable phantom energy traversable wormhole models, AIP Conf. Proc. 861 (2006) 936 [gr-qc/0603091] [INSPIRE].
  20. [20]
    M. Visser and D. Hochberg, Generic wormhole throats, Annals Israel Phys. Soc. 13 (1997) 249 [gr-qc/9710001] [INSPIRE].
  21. [21]
    M. Jamil, U. Farooq and M.A. Rashid, Wormholes supported by phantom-like modified Chaplygin gas, Eur. Phys. J. C 59 (2009) 907 [arXiv:0809.3376] [INSPIRE].
  22. [22]
    M. Jamil, P.K.F. Kuhfittig, F. Rahaman and S.A. Rakib, Wormholes supported by polytropic phantom energy, Eur. Phys. J. C 67 (2010) 513 [arXiv:0906.2142] [INSPIRE].
  23. [23]
    J.M.M. Senovilla and D. Garfinkle, The 1965 Penrose singularity theorem, Class. Quant. Grav. 32 (2015) 124008 [arXiv:1410.5226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    C.J. Fewster and G.J. Galloway, Singularity theorems from weakened energy conditions, Class. Quant. Grav. 28 (2011) 125009 [arXiv:1012.6038] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    C.-I. Kuo and L.H. Ford, Semiclassical gravity theory and quantum fluctuations, Phys. Rev. D 47 (1993) 4510 [gr-qc/9304008] [INSPIRE].
  26. [26]
    D. Krommydas, Violations of the Null Energy Condition in QFT and their Implications, Ph.D. thesis, Amsterdam University, 2017, arXiv:1806.00107 [INSPIRE].
  27. [27]
    M.J. Pfenning, Quantum inequality restrictions on negative energy densities in curved space-times, Ph.D. thesis, Tufts University, 1998, gr-qc/9805037 [INSPIRE].
  28. [28]
    N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, (1982).Google Scholar
  29. [29]
    H.B.G. Casimir, On the Attraction Between Two Perfectly Conducting Plates, Indag. Math. 10 (1948) 261 [Kon. Ned. Akad. Wetensch. Proc. 51 (1948) 793] [Front. Phys. 65 (1987) 342] [Kon. Ned. Akad. Wetensch. Proc. 100N3-4 (1997) 61] [INSPIRE].
  30. [30]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  31. [31]
    L.H. Ford, Quantum Coherence Effects and the Second Law of Thermodynamics, Proc. Roy. Soc. Lond. A 364 (1978) 227.Google Scholar
  32. [32]
    R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys. Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].
  33. [33]
    R. Bousso, Z. Fisher, J. Koeller, S. Leichenauer and A.C. Wall, Proof of the Quantum Null Energy Condition, Phys. Rev. D 93 (2016) 024017 [arXiv:1509.02542] [INSPIRE].
  34. [34]
    S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A General Proof of the Quantum Null Energy Condition, arXiv:1706.09432 [INSPIRE].
  35. [35]
    J. Koeller and S. Leichenauer, Holographic Proof of the Quantum Null Energy Condition, Phys. Rev. D 94 (2016) 024026 [arXiv:1512.06109] [INSPIRE].
  36. [36]
    Z. Fu, J. Koeller and D. Marolf, The Quantum Null Energy Condition in Curved Space, Class. Quant. Grav. 34 (2017) 225012 [Erratum ibid. 35 (2018) 049501] [arXiv:1706.01572] [INSPIRE].
  37. [37]
    R. Bousso, A covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117.Google Scholar
  39. [39]
    M.S. Morris and K.S. Thorne, Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity, Am. J. Phys. 56 (1988) 395 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    R.J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131 (1963) 2766 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    P. Gao, D.L. Jafferis and A. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. Visser, Traversable wormholes: Some simple examples, Phys. Rev. D 39 (1989) 3182 [arXiv:0809.0907] [INSPIRE].
  44. [44]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Volume II, Academic, New York, U.S.A., (1975).Google Scholar
  45. [45]
    B.L. Hu and N.G. Phillips, Fluctuations of energy density and validity of semiclassical gravity, Int. J. Theor. Phys. 39 (2000) 1817 [gr-qc/0004006] [INSPIRE].
  46. [46]
    I.-S. Yang, Entanglement timescale, Phys. Rev. D 97 (2018) 066008 [arXiv:1707.05792] [INSPIRE].
  47. [47]
    I.-S. Yang, Secret Loss of Unitarity due to the Classical Background, Phys. Rev. D 96 (2017) 025005 [arXiv:1703.03466] [INSPIRE].
  48. [48]
    J.D. Bekenstein, Entropy bounds and black hole remnants, Phys. Rev. D 49 (1994) 1912 [gr-qc/9307035] [INSPIRE].
  49. [49]
    J.D. Bekenstein, NonArchimedean character of quantum buoyancy and the generalized second law of thermodynamics, Phys. Rev. D 60 (1999) 124010 [gr-qc/9906058] [INSPIRE].
  50. [50]
    J.D. Bekenstein, On Page’s examples challenging the entropy bound, [INSPIRE].
  51. [51]
    R. Bousso, The Holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    D. Baker, D. Kodwani, U.-L. Pen and I.-S. Yang, A self-consistency check for unitary propagation of Hawking quanta, Int. J. Mod. Phys. A 32 (2017) 1750198 [arXiv:1701.04811] [INSPIRE].
  53. [53]
    N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP 05 (2004) 074 [hep-th/0312099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    S.L. Dubovsky and S.M. Sibiryakov, Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind, Phys. Lett. B 638 (2006) 509 [hep-th/0603158] [INSPIRE].
  55. [55]
    E.E. Flanagan, Quantum inequalities in two-dimensional Minkowski space-time, Phys. Rev. D 56 (1997) 4922 [gr-qc/9706006] [INSPIRE].
  56. [56]
    C.H. Wu and L.H. Ford, Fluctuations of the Hawking flux, Phys. Rev. D 60 (1999) 104013 [gr-qc/9905012] [INSPIRE].
  57. [57]
    L.H. Ford and C.-H. Wu, Stress tensor fluctuations and passive quantum gravity, Int. J. Theor. Phys. 42 (2003) 15 [gr-qc/0102063] [INSPIRE].
  58. [58]
    A.R. Brown, Tensile Strength and the Mining of Black Holes, Phys. Rev. Lett. 111 (2013) 211301 [arXiv:1207.3342] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    C.J. Fewster and T.A. Roman, Null energy conditions in quantum field theory, Phys. Rev. D 67 (2003) 044003 [Erratum ibid. D 80 (2009) 069903] [gr-qc/0209036] [INSPIRE].
  60. [60]
    C. Akers, V. Chandrasekaran, S. Leichenauer, A. Levine and A. Shahbazi Moghaddam, The Quantum Null Energy Condition, Entanglement Wedge Nesting and Quantum Focusing, arXiv:1706.04183 [INSPIRE].
  61. [61]
    H. Casini, Relative entropy and the Bekenstein bound, Class. Quant. Grav. 25 (2008) 205021 [arXiv:0804.2182] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.ITFA and GRAPPA, Universiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations