Advertisement

Journal of High Energy Physics

, 2018:66 | Cite as

High-dimensional neutrino masses

  • Gaetana AnamiatiEmail author
  • Oscar Castillo-Felisola
  • Renato M. Fonseca
  • J. C. Helo
  • M. Hirsch
Open Access
Regular Article - Theoretical Physics

Abstract

For Majorana neutrino masses the lowest dimensional operator possible is the Weinberg operator at d = 5. Here we discuss the possibility that neutrino masses originate from higher dimensional operators. Specifically, we consider all tree-level decompositions of the d = 9, d = 11 and d = 13 neutrino mass operators. With renormalizable interactions only, we find 18 topologies and 66 diagrams for d = 9, and 92 topologies plus 504 diagrams at the d = 11 level. At d = 13 there are already 576 topologies and 4199 diagrams. However, among all these there are only very few genuine neutrino mass models: At d = (9, 11, 13) we find only (2,2,2) genuine diagrams and a total of (2,2,6) models. Here, a model is considered genuine at level d if it automatically forbids lower order neutrino masses without the use of additional symmetries. We also briefly discuss how neutrino masses and angles can be easily fitted in these high-dimensional models.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. 67B (1977) 421 [INSPIRE].
  3. [3]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  4. [4]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
  5. [5]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. 94B (1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
  8. [8]
    C. Wetterich, Neutrino masses and the scale of B-L violation, Nucl. Phys. B 187 (1981) 343 [INSPIRE].
  9. [9]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].
  10. [10]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].
  11. [11]
    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].
  12. [12]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].
  13. [13]
    F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the d = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].
  14. [14]
    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
  15. [15]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  16. [16]
    Y. Cai, J. Herrero-García, M.A. Schmidt, A. Vicente and R.R. Volkas, From the trees to the forest: a review of radiative neutrino mass models, Front. in Phys. 5 (2017) 63 [arXiv:1706.08524] [INSPIRE].
  17. [17]
    A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. 93B (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].
  18. [18]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].
  19. [19]
    K.S. Babu, Model of ‘calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].
  20. [20]
    D. Aristizabal Sierra, A. Degee, L. Dorame and M. Hirsch, Systematic classification of two-loop realizations of the Weinberg operator, JHEP 03 (2015) 040 [arXiv:1411.7038] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].
  22. [22]
    M. Gustafsson, J.M. No and M.A. Rivera, Predictive model for radiatively induced neutrino masses and mixings with dark matter, Phys. Rev. Lett. 110 (2013) 211802 [Erratum ibid. 112 (2014) 259902] [arXiv:1212.4806] [INSPIRE].
  23. [23]
    R. Cepedello, R.M. Fonseca and M. Hirsch, Systematic classification of three-loop realizations of the Weinberg operator, JHEP 10 (2018) 197 [arXiv:1807.00629] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than d = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [INSPIRE].
  25. [25]
    K.S. Babu, S. Nandi and Z. Tavartkiladze, New mechanism for neutrino mass generation and triply charged Higgs bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [INSPIRE].
  26. [26]
    R. Cepedello, M. Hirsch and J.C. Helo, Loop neutrino masses from d = 7 operator, JHEP 07 (2017) 079 [arXiv:1705.01489] [INSPIRE].
  27. [27]
    R. Cepedello, M. Hirsch and J.C. Helo, Lepton number violating phenomenology of d = 7 neutrino mass models, JHEP 01 (2018) 009 [arXiv:1709.03397] [INSPIRE].
  28. [28]
    I. Picek and B. Radovcic, Novel TeV-scale seesaw mechanism with Dirac mediators, Phys. Lett. B 687 (2010) 338 [arXiv:0911.1374] [INSPIRE].
  29. [29]
    K. Kumericki, I. Picek and B. Radovcic, TeV-scale seesaw with quintuplet fermions, Phys. Rev. D 86 (2012) 013006 [arXiv:1204.6599] [INSPIRE].
  30. [30]
    Y. Liao, Cascade seesaw for tiny neutrino mass, JHEP 06 (2011) 098 [arXiv:1011.3633] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    K.L. McDonald, Minimal tree-level seesaws with a heavy intermediate Fermion, JHEP 07 (2013) 020 [arXiv:1303.4573] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K.L. McDonald, Probing exotic fermions from a seesaw/radiative model at the LHC, JHEP 11 (2013) 131 [arXiv:1310.0609] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Nomura and H. Okada, Neutrino mass with large SU(2)L multiplet fields, Phys. Rev. D 96 (2017) 095017 [arXiv:1708.03204] [INSPIRE].
  34. [34]
    T. Nomura, H. Okada and Y. Orikasa, SU(2)L septet scalar linking to a radiative neutrino model, Phys. Rev. D 94 (2016) 055012 [arXiv:1605.02601] [INSPIRE].
  35. [35]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].
  36. [36]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  37. [37]
    Y. Liao, Unique neutrino mass operator at any mass dimension, Phys. Lett. B 694 (2011) 346 [arXiv:1009.1692] [INSPIRE].
  38. [38]
    ATLAS collaboration, Search for doubly-charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2017-053 (2017).
  39. [39]
    R.C. Read, A survey of graph generation techniques, in Combinatorial Mathematics VIII, K.L. McAvaney ed., Springer (1981).Google Scholar
  40. [40]
    R.D. Cameron et al., Cataloguing the graphs on 10 vertices, J. Graph Theory 9 (1985) 551.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
  42. [42]
    [42 F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].
  43. [43]
    F. Staub, T. Ohl, W. Porod and C. Speckner, A tool box for implementing supersymmetric models, Comput. Phys. Commun. 183 (2012) 2165 [arXiv:1109.5147] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  45. [45]
    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
  46. [46]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    CMS collaboration, Search for evidence of the type-III seesaw mechanism in multilepton final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 119 (2017) 221802 [arXiv:1708.07962] [INSPIRE].
  48. [48]
    P.F. de Salas et al., Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].
  49. [49]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Gaetana Anamiati
    • 1
    Email author
  • Oscar Castillo-Felisola
    • 2
    • 3
  • Renato M. Fonseca
    • 4
  • J. C. Helo
    • 3
    • 5
  • M. Hirsch
    • 1
  1. 1.AHEP Group, Instituto de Física Corpuscular — CSIC/Universitat de ValènciaValènciaSpain
  2. 2.Universidad Técnica Federico Santa MaríaValparaísoChile
  3. 3.Centro-Cientıfico-Tecnológico de ValparaísoValparaísoChile
  4. 4.Institute of Particle and Nuclear Physics Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czech Republic
  5. 5.Departamento de Física, Facultad de CienciasUniversidad de La SerenaLa SerenaChile

Personalised recommendations