Advertisement

Journal of High Energy Physics

, 2018:64 | Cite as

The Lund jet plane

  • Frédéric A. Dreyer
  • Gavin P. Salam
  • Grégory Soyez
Open Access
Regular Article - Theoretical Physics

Abstract

Lund diagrams, a theoretical representation of the phase space within jets, have long been used in discussing parton showers and resummations. We point out that they can be created for individual jets through repeated Cambridge/Aachen declustering, providing a powerful visual representation of the radiation within any given jet. Concentrating here on the primary Lund plane, we outline some of its analytical properties, highlight its scope for constraining Monte Carlo simulations and comment on its relation with existing observables such as the zg variable and the iterated soft-drop multiplicity. We then examine its use for boosted electroweak boson tagging at high momenta. It provides good performance when used as an input to machine learning. Much of this performance can be reproduced also within a transparent log-likelihood method, whose underlying assumption is that different regions of the primary Lund plane are largely decorrelated. This suggests a potential for unique insight and experimental validation of the features being used by machine-learning approaches.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, arXiv:1709.04464 [INSPIRE].
  2. [2]
    L. Asquith et al., Jet Substructure at the Large Hadron Collider: Experimental Review, arXiv:1803.06991 [INSPIRE].
  3. [3]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].
  7. [7]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].
  8. [8]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].
  9. [9]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].
  10. [10]
    J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Y.-T. Chien, Telescoping jets: Probing hadronic event structure with multiple R’s, Phys. Rev. D 90 (2014) 054008 [arXiv:1304.5240] [INSPIRE].
  13. [13]
    A.J. Larkoski, I. Moult and D. Neill, Power Counting to Better Jet Observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].
  14. [14]
    A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information about Quark/Gluon Discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    I. Moult, L. Necib and J. Thaler, New Angles on Energy Correlation Functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].
  16. [16]
    G.P. Salam, L. Schunk and G. Soyez, Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging, JHEP 03 (2017) 022 [arXiv:1612.03917] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M.H. Seymour, Jet shapes in hadron collisions: Higher orders, resummation and hadronization, Nucl. Phys. B 513 (1998) 269 [hep-ph/9707338] [INSPIRE].
  18. [18]
    I. Feige, M.D. Schwartz, I.W. Stewart and J. Thaler, Precision Jet Substructure from Boosted Event Shapes, Phys. Rev. Lett. 109 (2012) 092001 [arXiv:1204.3898] [INSPIRE].
  19. [19]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].
  21. [21]
    Y.-T. Chien and I. Vitev, Jet Shape Resummation Using Soft-Collinear Effective Theory, JHEP 12 (2014) 061 [arXiv:1405.4293] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Bertolini, J. Thaler and J.R. Walsh, The First Calculation of Fractional Jets, JHEP 05 (2015) 008 [arXiv:1501.01965] [INSPIRE].
  23. [23]
    M. Dasgupta, L. Schunk and G. Soyez, Jet shapes for boosted jet two-prong decays from first-principles, JHEP 04 (2016) 166 [arXiv:1512.00516] [INSPIRE].ADSGoogle Scholar
  24. [24]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375 [INSPIRE].
  25. [25]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Dasgupta, A. Powling, L. Schunk and G. Soyez, Improved jet substructure methods: Y-splitter and variants with grooming, JHEP 12 (2016) 079 [arXiv:1609.07149] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after Soft Drop, Eur. Phys. J. C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].
  28. [28]
    S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A.J. Larkoski, I. Moult and D. Neill, Factorization and Resummation for Groomed Multi-Prong Jet Shapes, JHEP 02 (2018) 144 [arXiv:1710.00014] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    I. Moult, B. Nachman and D. Neill, Convolved Substructure: Analytically Decorrelating Jet Substructure Observables, JHEP 05 (2018) 002 [arXiv:1710.06859] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    CMS collaboration, Identification techniques for highly boosted W bosons that decay into hadrons, JHEP 12 (2014) 017 [arXiv:1410.4227] [INSPIRE].
  32. [32]
    ATLAS collaboration, Identification of boosted, hadronically decaying W bosons and comparisons with ATLAS data taken at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76 (2016) 154 [arXiv:1510.05821] [INSPIRE].
  33. [33]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  34. [34]
    ATLAS collaboration, Measurement of the Soft-Drop Jet Mass in pp Collisions at \( \sqrt{s}=13 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 121(2018) 092001 [arXiv:1711.08341] [INSPIRE].
  35. [35]
    CMS collaboration, Measurement of jet substructure observables in tt events from pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-TOP-17-013 (2017).
  36. [36]
    J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-Images: Computer Vision Inspired Techniques for Jet Tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning Top Taggers or The End of QCD?, JHEP 05 (2017) 006 [arXiv:1701.08784] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-Aware Recursive Neural Networks for Jet Physics, arXiv:1702.00748 [INSPIRE].
  41. [41]
    S. Egan, W. Fedorko, A. Lister, J. Pearkes and C. Gay, Long Short-Term Memory (LSTM) networks with jet constituents for boosted top tagging at the LHC, arXiv:1711.09059 [INSPIRE].
  42. [42]
    A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics, arXiv:1804.09720 [INSPIRE].
  43. [43]
    K. Datta and A. Larkoski, How Much Information is in a Jet?, JHEP 06 (2017) 073 [arXiv:1704.08249] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Datta and A.J. Larkoski, Novel Jet Observables from Machine Learning, JHEP 03 (2018) 086 [arXiv:1710.01305] [INSPIRE].
  45. [45]
    P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow polynomials: A complete linear basis for jet substructure, JHEP 04 (2018) 013 [arXiv:1712.07124] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    E.M. Metodiev, B. Nachman and J. Thaler, Classification without labels: Learning from mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    L.M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, Weakly Supervised Classification in High Energy Physics, JHEP 05 (2017) 145 [arXiv:1702.00414] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    B. Andersson, G. Gustafson, L. Lönnblad and U. Pettersson, Coherence Effects in Deep Inelastic Scattering, Z. Phys. C 43 (1989) 625 [INSPIRE].
  49. [49]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
  50. [50]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Monte Carlo generators for HERA physics. Proceedings, Workshop, Hamburg, Germany, 1998-1999, pp. 270-279, hep-ph/9907280 [INSPIRE].
  51. [51]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  53. [53]
    P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
  54. [54]
    M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to all orders in QCD, JHEP 04 (2015) 039 [arXiv:1411.5182] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Dasgupta, F.A. Dreyer, G.P. Salam and G. Soyez, Inclusive jet spectrum for small-radius jets, JHEP 06 (2016) 057 [arXiv:1602.01110] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
  57. [57]
    R.B. Appleby and M.H. Seymour, Nonglobal logarithms in interjet energy flow with kt clustering requirement, JHEP 12 (2002) 063 [hep-ph/0211426] [INSPIRE].
  58. [58]
    Y. Delenda, R. Appleby, M. Dasgupta and A. Banfi, On QCD resummation with k(t) clustering, JHEP 12 (2006) 044 [hep-ph/0610242] [INSPIRE].
  59. [59]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  60. [60]
    J. Bellm et al., HERWIG 7.1 Release Note, arXiv:1705.06919 [INSPIRE].
  61. [61]
    Y.L. Dokshitzer and B.R. Webber, Calculation of power corrections to hadronic event shapes, Phys. Lett. B 352 (1995) 451 [hep-ph/9504219] [INSPIRE].
  62. [62]
    Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Dispersive approach to power behaved contributions in QCD hard processes, Nucl. Phys. B 469 (1996) 93 [hep-ph/9512336] [INSPIRE].
  63. [63]
    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP 08 (2006) 059 [hep-ph/0604094] [INSPIRE].
  64. [64]
    S. Catani, D. de Florian and G. Rodrigo, Space-like (versus time-like) collinear limits in QCD: Is factorization violated?, JHEP 07 (2012) 026 [arXiv:1112.4405] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  66. [66]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  67. [67]
    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering algorithm for multi-jet cross-sections in e + e annihilation, Phys. Lett. B 269 (1991) 432 [INSPIRE].
  68. [68]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  69. [69]
    C. Frye, A.J. Larkoski, J. Thaler and K. Zhou, Casimir Meets Poisson: Improved Quark/Gluon Discrimination with Counting Observables, JHEP 09 (2017) 083 [arXiv:1704.06266] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Larkoski, S. Marzani, J. Thaler, A. Tripathee and W. Xue, Exposing the QCD Splitting Function with CMS Open Data, Phys. Rev. Lett. 119 (2017) 132003 [arXiv:1704.05066] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].
  73. [73]
    S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997) 1735.CrossRefGoogle Scholar
  74. [74]
    K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenkand Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation, arXiv:1406.1078.
  75. [75]
    F. Chollet, Keras, https://keras.io, (2015).
  76. [76]
    M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems, (2015), software available from https://www.tensorflow.org/.
  77. [77]
    K. He, X. Zhang, S. Ren and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, arXiv:1502.01852 [INSPIRE].
  78. [78]
    D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980 [INSPIRE].
  79. [79]
    A. Hocker et al., TMVA — Toolkit for Multivariate Data Analysis, PoS(ACAT)040 [physics/0703039] [INSPIRE].
  80. [80]
    J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, arXiv:1803.07977 [INSPIRE].
  81. [81]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  82. [82]
    A. Katz, M. Son and B. Tweedie, Jet Substructure and the Search for Neutral Spin-One Resonances in Electroweak Boson Channels, JHEP 03 (2011) 011 [arXiv:1010.5253] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M. Son, C. Spethmann and B. Tweedie, Diboson-Jets and the Search for Resonant Zh Production, JHEP 08 (2012) 160 [arXiv:1204.0525] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    S. Schaetzel and M. Spannowsky, Tagging highly boosted top quarks, Phys. Rev. D 89 (2014) 014007 [arXiv:1308.0540] [INSPIRE].
  85. [85]
    A.J. Larkoski, F. Maltoni and M. Selvaggi, Tracking down hyper-boosted top quarks, JHEP 06 (2015) 032 [arXiv:1503.03347] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    S. Bressler, T. Flacke, Y. Kats, S.J. Lee and G. Perez, Hadronic Calorimeter Shower Size: Challenges and Opportunities for Jet Substructure in the Superboosted Regime, Phys. Lett. B 756 (2016) 137 [arXiv:1506.02656] [INSPIRE].
  87. [87]
    Z. Han, M. Son and B. Tweedie, Top-Tagging at the Energy Frontier, Phys. Rev. D 97 (2018) 036023 [arXiv:1707.06741] [INSPIRE].
  88. [88]
    CMS collaboration, V Tagging Observables and Correlations, CMS-PAS-JME-14-002.
  89. [89]
    ATLAS Collaboration, Jet mass reconstruction with the ATLAS Detector in early Run 2 data, ATLAS-CONF-2016-035.
  90. [90]
    M. Cacciari, G.P. Salam and G. Soyez, SoftKiller, a particle-level pileup removal method, Eur. Phys. J. C 75 (2015) 59 [arXiv:1407.0408] [INSPIRE].
  91. [91]
    D. Bertolini, P. Harris, M. Low and N. Tran, Pileup Per Particle Identification, JHEP 10 (2014) 059 [arXiv:1407.6013] [INSPIRE].
  92. [92]
    P. Berta, M. Spousta, D.W. Miller and R. Leitner, Particle-level pileup subtraction for jets and jet shapes, JHEP 06 (2014) 092 [arXiv:1403.3108] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Pileup Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051 [arXiv:1707.08600] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].
  95. [95]
    M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].
  97. [97]
    F.A. Dreyer, L. Necib, G. Soyez and J. Thaler, Recursive Soft Drop, JHEP 06 (2018) 093 [arXiv:1804.03657] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    I.J. Goodfellow et al., Generative Adversarial Networks, Adv. Neural Inf. Process. Syst. 27 (2014) 2672 [arXiv:1406.2661] [INSPIRE].
  99. [99]
    G. Louppe, M. Kagan and K. Cranmer, Learning to Pivot with Adversarial Networks, arXiv:1611.01046 [INSPIRE].
  100. [100]
    C. Shimmin et al., Decorrelated Jet Substructure Tagging using Adversarial Neural Networks, Phys. Rev. D 96 (2017) 074034 [arXiv:1703.03507] [INSPIRE].
  101. [101]
    H.A. Andrews et al., Novel tools and observables for jet physics in heavy-ion collisions, arXiv:1808.03689 [INSPIRE].
  102. [102]
    Y.-T. Chien and R. Kunnawalkam Elayavalli, Probing heavy ion collisions using quark and gluon jet substructure, arXiv:1803.03589 [INSPIRE].
  103. [103]
    ALICE collaboration, H. Andrews, Exploring phase space of jet splittings at alice using grooming and recursive techniques, (2018). Talk at Quark Matter 2018, Venice, Italy, https://indico.cern.ch/event/656452/contributions/2869941/attachments/1649044/2636550/HarryAndrews_QuarkMatter18Final.pdf.
  104. [104]
    J. Dolen, P. Harris, S. Marzani, S. Rappoccio and N. Tran, Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure, JHEP 05 (2016) 156 [arXiv:1603.00027] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    Z. Hall and J. Thaler, Photon isolation and jet substructure, JHEP 09 (2018) 164 [arXiv:1805.11622] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    K.S. Tai, R. Socher and C.D. Manning, Improved semantic representations from tree-structured long short-term memory networks, [arXiv:1503.00075].
  107. [107]
    M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni and G.P. Salam, Logarithmic accuracy of parton showers: a fixed-order study, JHEP 09 (2018) 033 [arXiv:1805.09327] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    B.T. Elder and J. Thaler, Aspects of Track-Assisted Mass, arXiv:1805.11109 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Frédéric A. Dreyer
    • 1
    • 2
  • Gavin P. Salam
    • 3
    • 2
    • 4
  • Grégory Soyez
    • 5
  1. 1.Center for Theoretical Physics, Massachusetts Institute of TechnologyCambridgeU.S.A.
  2. 2.Rudolf Peierls Centre for Theoretical Physics, Clarendon LaboratoryOxfordU.K.
  3. 3.CERN, Theoretical Physics DepartmentGeneva 23Switzerland
  4. 4.All Souls CollegeOxfordU.K.
  5. 5.IPhT, Université Paris-Saclay, CNRS UMR 3681, CEA SaclayGif-sur-YvetteFrance

Personalised recommendations