Advertisement

Journal of High Energy Physics

, 2018:60 | Cite as

Marginal deformations of 3d \( \mathcal{N}=2 \) CFTs from AdS4 backgrounds in generalised geometry

  • Anthony AshmoreEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We study exactly marginal deformations of 3d \( \mathcal{N}=2 \) CFTs dual to AdS4 solutions in eleven-dimensional supergravity using generalised geometry. Focussing on Sasaki-Einstein backgrounds, we find that marginal deformations correspond to turning on a four-form flux on the internal space at first order. Viewing this as the deformation of a generalised structure, we derive a general expression for the four-form flux in terms of a holomorphic function. We discuss the explicit examples of S7, Q1,1,1 and M1,1,1 and, using an obstruction analysis, find the conditions for the first-order deformations to extend all orders, thus identifying which marginal deformations are exactly marginal. We also show how the all-orders γ-deformation of Lunin and Maldacena can be encoded as a tri-vector deformation in generalised geometry and outline how to recover the supergravity solution from the generalised metric.

Keywords

AdS-CFT Correspondence Flux compactifications Conformal Field Theory Differential and Algebraic Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    V. Bashmakov, M. Bertolini and H. Raj, On non-supersymmetric conformal manifolds: field theory and holography, JHEP 11 (2017) 167 [arXiv:1709.01749] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of Superconformal Theories, JHEP 11 (2016) 135 [arXiv:1602.01217] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M.J. Strassler, On renormalization group flows and exactly marginal operators in three-dimensions, hep-th/9810223 [INSPIRE].
  5. [5]
    Y. Tachikawa, Five-dimensional supergravity dual of a-maximization, Nucl. Phys. B 733 (2006) 188 [hep-th/0507057] [INSPIRE].
  6. [6]
    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Martelli and J. Sparks, Notes on toric Sasaki-Einstein seven-manifolds and AdS 4 /CF T 3, JHEP 11 (2008) 016 [arXiv:0808.0904] [INSPIRE].
  8. [8]
    V. Asnin, On metric geometry of conformal moduli spaces of four-dimensional superconformal theories, JHEP 09 (2010) 012 [arXiv:0912.2529] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    N. Akerblom, C. Sämann and M. Wolf, Marginal Deformations and 3-Algebra Structures, Nucl. Phys. B 826 (2010) 456 [arXiv:0906.1705] [INSPIRE].
  10. [10]
    M.S. Bianchi, S. Penati and M. Siani, Infrared stability of ABJ-like theories, JHEP 01 (2010) 080 [arXiv:0910.5200] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    M.S. Bianchi, S. Penati and M. Siani, Infrared Stability of N = 2 Chern-Simons Matter Theories, JHEP 05 (2010) 106 [arXiv:0912.4282] [INSPIRE].
  12. [12]
    C.-M. Chang and X. Yin, Families of Conformal Fixed Points of N = 2 Chern-Simons-Matter Theories, JHEP 05 (2010) 108 [arXiv:1002.0568] [INSPIRE].
  13. [13]
    M.S. Bianchi and S. Penati, The Conformal Manifold of Chern-Simons Matter Theories, JHEP 01 (2011) 047 [arXiv:1009.6223] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S. de Alwis, J. Louis, L. McAllister, H. Triendl and A. Westphal, Moduli spaces in AdS 4 supergravity, JHEP 05 (2014) 102 [arXiv:1312.5659] [INSPIRE].
  15. [15]
    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].
  16. [16]
    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].
  17. [17]
    B. Kol, On conformal deformations, JHEP 09 (2002) 046 [hep-th/0205141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    B. Kol, On conformal deformations II, arXiv:1005.4408 [INSPIRE].
  19. [19]
    D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly Marginal Deformations and Global Symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Baggio, N. Bobev, S.M. Chester, E. Lauria and S.S. Pufu, Decoding a Three-Dimensional Conformal Manifold, JHEP 02 (2018) 062 [arXiv:1712.02698] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    O. Aharony, B. Kol and S. Yankielowicz, On exactly marginal deformations of N = 4 SYM and type IIB supergravity on AdS 5 × S 5, JHEP 06 (2002) 039 [hep-th/0205090] [INSPIRE].
  22. [22]
    M. Graña and J. Polchinski, Supersymmetric three form flux perturbations on AdS 5, Phys. Rev. D 63 (2001) 026001 [hep-th/0009211] [INSPIRE].
  23. [23]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].
  24. [24]
    S. Benvenuti and A. Hanany, Conformal manifolds for the conifold and other toric field theories, JHEP 08 (2005) 024 [hep-th/0502043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Butti, D. Forcella, L. Martucci, R. Minasian, M. Petrini and A. Zaffaroni, On the geometry and the moduli space of beta-deformed quiver gauge theories, JHEP 07 (2008) 053 [arXiv:0712.1215] [INSPIRE].
  26. [26]
    J.P. Gauntlett, S. Lee, T. Mateos and D. Waldram, Marginal deformations of field theories with AdS 4 duals, JHEP 08 (2005) 030 [hep-th/0505207] [INSPIRE].
  27. [27]
    C.-h. Ahn and J.F. Vazquez-Poritz, Marginal deformations with U (1)3 global symmetry, JHEP 07 (2005) 032 [hep-th/0505168] [INSPIRE].
  28. [28]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  29. [29]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × ℝ+ generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].
  30. [30]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry II: E d(d) × ℝ+ and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].
  31. [31]
    P. Pires Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Graña, J. Louis, A. Sim and D. Waldram, E7(7) formulation of N = 2 backgrounds, JHEP 07 (2009) 104 [arXiv:0904.2333] [INSPIRE].
  33. [33]
    A. Ashmore, M. Gabella, M. Graña, M. Petrini and D. Waldram, Exactly marginal deformations from exceptional generalised geometry, JHEP 01 (2017) 124 [arXiv:1605.05730] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Ashmore, M. Petrini and D. Waldram, The exceptional generalised geometry of supersymmetric AdS flux backgrounds, JHEP 12 (2016) 146 [arXiv:1602.02158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    R. Minasian, M. Petrini and A. Zaffaroni, Gravity duals to deformed SYM theories and Generalized Complex Geometry, JHEP 12 (2006) 055 [hep-th/0606257] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    I. Bakhmatov, Ö. Kelekci, E. Ó Colgáin and M.M. Sheikh-Jabbari, Classical Yang-Baxter Equation from Supergravity, Phys. Rev. D 98 (2018) 021901 [arXiv:1710.06784] [INSPIRE].
  37. [37]
    I. Bakhmatov, E. Colgáin, M.M. Sheikh-Jabbari and H. Yavartanoo, Yang-Baxter Deformations Beyond Coset Spaces (a slick way to do TsT), JHEP 06 (2018) 161 [arXiv:1803.07498] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Ashmore and D. Waldram, Exceptional Calabi-Yau spaces: the geometry of \( \mathcal{N}=2 \) backgrounds with flux, Fortsch. Phys. 65 (2017) 1600109 [arXiv:1510.00022] [INSPIRE].
  42. [42]
    K. Behrndt, M. Cvetič and T. Liu, Classification of supersymmetric flux vacua in M-theory, Nucl. Phys. B 749 (2006) 25 [hep-th/0512032] [INSPIRE].
  43. [43]
    G. Dall’Agata and N. Prezas, N = 1 geometries for M-theory and type IIA strings with fluxes, Phys. Rev. D 69 (2004) 066004 [hep-th/0311146] [INSPIRE].
  44. [44]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281 [math/0209099] [INSPIRE].
  45. [45]
    M. Gualtieri, Generalized complex geometry, Ph.D. Thesis, Oxford University (2003) [math/0401221].
  46. [46]
    C.M. Hull, Generalised Geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    N.J. Hitchin, The Geometry of Three-Forms in Six Dimensions, J. Diff. Geom. 55 (2000) 547 [math/0010054] [INSPIRE].
  48. [48]
    L. Borsten, D. Dahanayake, M.J. Duff and W. Rubens, Black holes admitting a Freudenthal dual, Phys. Rev. D 80 (2009) 026003 [arXiv:0903.5517] [INSPIRE].
  49. [49]
    P. Levay and G. Sarosi, Hitchin functionals are related to measures of entanglement, Phys. Rev. D 86 (2012) 105038 [arXiv:1206.5066] [INSPIRE].
  50. [50]
    L. Borsten, M.J. Duff, S. Ferrara and A. Marrani, Freudenthal Dual Lagrangians, Class. Quant. Grav. 30 (2013) 235003 [arXiv:1212.3254] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    R. Eager, J. Schmude and Y. Tachikawa, Superconformal Indices, Sasaki-Einstein Manifolds and Cyclic Homologies, Adv. Theor. Math. Phys. 18 (2014) 129 [arXiv:1207.0573] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    R. Eager and J. Schmude, Superconformal Indices and M2-Branes, JHEP 12 (2015) 062 [arXiv:1305.3547] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  53. [53]
    A. Coimbra and C. Strickland-Constable, Supersymmetric Backgrounds, the Killing Superalgebra and Generalised Special Holonomy, JHEP 11 (2016) 063 [arXiv:1606.09304] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    S. Cheon, D. Gang, S. Kim and J. Park, Refined test of AdS 4 /CFT 3 correspondence for N = 2,3 theories, JHEP 05 (2011) 027 [arXiv:1102.4273] [INSPIRE].
  56. [56]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].
  57. [57]
    R. D’Auria, P. Fré and P. van Nieuwenhuizen, N = 2 Matter Coupled Supergravity From Compactification on a Coset G/H Possessing an Additional Killing Vector, Phys. Lett. B 136 (1984) 347 [INSPIRE].
  58. [58]
    D.N. Page and C.N. Pope, Which Compactifications of D = 11 Supergravity Are Stable?, Phys. Lett. B 144 (1984) 346 [INSPIRE].
  59. [59]
    N. Benishti, D. Rodríguez-Gómez and J. Sparks, Baryonic symmetries and M5 branes in the AdS 4 /CF T 3 correspondence, JHEP 07 (2010) 024 [arXiv:1004.2045] [INSPIRE].
  60. [60]
    S. Franco, I.R. Klebanov and D. Rodríguez-Gómez, M2-branes on Orbifolds of the Cone over Q 1,1,1, JHEP 08 (2009) 033 [arXiv:0903.3231] [INSPIRE].
  61. [61]
    M. Petrini and A. Zaffaroni, N = 2 solutions of massive type IIA and their Chern-Simons duals, JHEP 09 (2009) 107 [arXiv:0904.4915] [INSPIRE].
  62. [62]
    D. Fabbri, P. Fré, L. Gualtieri, C. Reina, A. Tomasiello, A. Zaffaroni et al., 3-D superconformal theories from Sasakian seven manifolds: New nontrivial evidences for AdS 4 /CF T 3, Nucl. Phys. B 577 (2000) 547 [hep-th/9907219] [INSPIRE].
  63. [63]
    N. Halmagyi and A. Tomasiello, Generalized Kähler Potentials from Supergravity, Commun. Math. Phys. 291 (2009) 1 [arXiv:0708.1032] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    H. Dlamini and K. Zoubos, Integrable Hopf twists, marginal deformations and generalised geometry, arXiv:1602.08061 [INSPIRE].
  65. [65]
    T. Mansson and K. Zoubos, Quantum Symmetries and Marginal Deformations, JHEP 10 (2010) 043 [arXiv:0811.3755] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Merton CollegeUniversity of OxfordOxfordU.K.
  2. 2.Mathematical InstituteUniversity of OxfordOxfordU.K.

Personalised recommendations