Advertisement

Journal of High Energy Physics

, 2018:55 | Cite as

Cubic interaction vertices for massive/massless continuous-spin fields and arbitrary spin fields

  • R. R. MetsaevEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We use light-cone gauge formalism to study interacting massive and massless continuous-spin fields and finite component arbitrary spin fields propagating in the flat space. Cubic interaction vertices for such fields are considered. We obtain parity invariant cubic vertices for coupling of one continuous-spin field to two arbitrary spin fields and cubic vertices for coupling of two continuous-spin fields to one arbitrary spin field. Parity invariant cubic vertices for self-interacting massive/massless continuous-spin fields are also obtained. We find the complete list of parity invariant cubic vertices for continuous-spin fields and arbitrary spin fields.

Keywords

Field Theories in Higher Dimensions Space-Time Symmetries Higher Spin Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    X. Bekaert and N. Boulanger, The Unitary representations of the Poincaré group in any spacetime dimension, in 2nd Modave Summer School in Theoretical Physics, Modave, Belgium, August 6–12, 2006 (2006) [hep-th/0611263] [INSPIRE].
  2. [2]
    X. Bekaert and E.D. Skvortsov, Elementary particles with continuous spin, Int. J. Mod. Phys. A 32 (2017) 1730019 [arXiv:1708.01030] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    L. Brink, A.M. Khan, P. Ramond and X.-z. Xiong, Continuous spin representations of the Poincaré and superPoincaré groups, J. Math. Phys. 43 (2002) 6279 [hep-th/0205145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d, Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    G.K. Savvidy, Tensionless strings: Physical Fock space and higher spin fields, Int. J. Mod. Phys. A 19 (2004) 3171 [hep-th/0310085] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Mourad, Continuous spin particles from a string theory, hep-th/0504118 [INSPIRE].
  8. [8]
    A. Font, F. Quevedo and S. Theisen, A comment on continuous spin representations of the Poincaré group and perturbative string theory, Fortsch. Phys. 62 (2014) 975 [arXiv:1302.4771] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    X. Bekaert and J. Mourad, The Continuous spin limit of higher spin field equations, JHEP 01 (2006) 115 [hep-th/0509092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    P. Schuster and N. Toro, Continuous-spin particle field theory with helicity correspondence, Phys. Rev. D 91 (2015) 025023 [arXiv:1404.0675] [INSPIRE].ADSGoogle Scholar
  11. [11]
    X. Bekaert, M. Najafizadeh and M.R. Setare, A gauge field theory of fermionic Continuous-Spin Particles, Phys. Lett. B 760 (2016) 320 [arXiv:1506.00973] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    V.O. Rivelles, Gauge Theory Formulations for Continuous and Higher Spin Fields, Phys. Rev. D 91 (2015) 125035 [arXiv:1408.3576] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    V.O. Rivelles, Remarks on a Gauge Theory for Continuous Spin Particles, Eur. Phys. J. C 77 (2017) 433 [arXiv:1607.01316] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.R. Metsaev, Continuous spin gauge field in (A)dS space, Phys. Lett. B 767 (2017) 458 [arXiv:1610.00657] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R.R. Metsaev, Fermionic continuous spin gauge field in (A)dS space, Phys. Lett. B 773 (2017) 135 [arXiv:1703.05780] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    Yu.M. Zinoviev, Infinite spin fields in d = 3 and beyond, Universe 3 (2017) 63 [arXiv:1707.08832] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Najafizadeh, Modified Wigner equations and continuous spin gauge field, Phys. Rev. D 97 (2018) 065009 [arXiv:1708.00827] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    R.R. Metsaev, Cubic interaction vertices for continuous-spin fields and arbitrary spin massive fields, JHEP 11 (2017) 197 [arXiv:1709.08596] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    X. Bekaert, J. Mourad and M. Najafizadeh, Continuous-spin field propagator and interaction with matter, JHEP 11 (2017) 113 [arXiv:1710.05788] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    V.O. Rivelles, A Gauge Field Theory for Continuous Spin Tachyons, arXiv:1807.01812 [INSPIRE].
  21. [21]
    P.A.M. Dirac, Forms of Relativistic Dynamics, Rev. Mod. Phys. 21 (1949) 392 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M.B. Green, J.H. Schwarz and L. Brink, Superfield Theory of Type II Superstrings, Nucl. Phys. B 219 (1983) 437 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M.B. Green and J.H. Schwarz, Superstring Field Theory, Nucl. Phys. B 243 (1984) 475 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic Interaction Terms for Arbitrary Spin, Nucl. Phys. B 227 (1983) 31 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R.R. Metsaev, S matrix approach to massless higher spins theory. 2: The Case of internal symmetry, Mod. Phys. Lett. A 6 (1991) 2411 [INSPIRE].
  26. [26]
    R.R. Metsaev, Generating function for cubic interaction vertices of higher spin fields in any dimension, Mod. Phys. Lett. A 8 (1993) 2413 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    R.R. Metsaev, Cubic interaction vertices for fermionic and bosonic arbitrary spin fields, Nucl. Phys. B 859 (2012) 13 [arXiv:0712.3526] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    C. Sleight and M. Taronna, Higher-Spin Algebras, Holography and Flat Space, JHEP 02 (2017) 095 [arXiv:1609.00991] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D. Ponomarev and E.D. Skvortsov, Light-Front Higher-Spin Theories in Flat Space, J. Phys. A 50 (2017) 095401 [arXiv:1609.04655] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    E.D. Skvortsov, T. Tran and M. Tsulaia, Quantum Chiral Higher Spin Gravity, Phys. Rev. Lett. 121 (2018) 031601 [arXiv:1805.00048] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R.R. Metsaev, Eleven dimensional supergravity in light cone gauge, Phys. Rev. D 71 (2005) 085017 [hep-th/0410239] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    S. Ananth, L. Brink and P. Ramond, Eleven-dimensional supergravity in light-cone superspace, JHEP 05 (2005) 003 [hep-th/0501079] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    P. Kessel and K. Mkrtchyan, Cubic interactions of massless bosonic fields in three dimensions II: Parity-odd and Chern-Simons vertices, Phys. Rev. D 97 (2018) 106021 [arXiv:1803.02737] [INSPIRE].ADSGoogle Scholar
  35. [35]
    F.W.J. Olver ed., NIST handbook of mathematical functions — Hardback and CD-ROM, Cambridge University Press (2010).Google Scholar
  36. [36]
    W. Siegel, Introduction to string field theory, Adv. Ser. Math. Phys. 8 (1988) 1 [hep-th/0107094] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  37. [37]
    R.R. Metsaev, BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields, Phys. Lett. B 720 (2013) 237 [arXiv:1205.3131] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Sagnotti and M. Taronna, String Lessons for Higher-Spin Interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    R. Manvelyan, K. Mkrtchyan and W. Rühl, General trilinear interaction for arbitrary even higher spin gauge fields, Nucl. Phys. B 836 (2010) 204 [arXiv:1003.2877] [INSPIRE].
  40. [40]
    R. Manvelyan, K. Mkrtchyan and W. Ruehl, A Generating function for the cubic interactions of higher spin fields, Phys. Lett. B 696 (2011) 410 [arXiv:1009.1054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A. Fotopoulos and M. Tsulaia, On the Tensionless Limit of String theory, Off-Shell Higher Spin Interaction Vertices and BCFW Recursion Relations, JHEP 11 (2010) 086 [arXiv:1009.0727] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    P. Dempster and M. Tsulaia, On the Structure of Quartic Vertices for Massless Higher Spin Fields on Minkowski Background, Nucl. Phys. B 865 (2012) 353 [arXiv:1203.5597] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    A.K.H. Bengtsson, BRST Theory for Continuous Spin, JHEP 10 (2013) 108 [arXiv:1303.3799] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R.R. Metsaev, BRST-BV approach to continuous-spin field, Phys. Lett. B781 (2018) 568 [arXiv:1803.08421] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    I.L. Buchbinder, V.A. Krykhtin and H. Takata, BRST approach to Lagrangian construction for bosonic continuous spin field, Phys. Lett. B 785 (2018) 315 [arXiv:1806.01640] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    X. Bekaert, N. Boulanger and S. Cnockaert, Spin three gauge theory revisited, JHEP 01 (2006) 052 [hep-th/0508048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    M. Henneaux, G. Lucena Gómez and R. Rahman, Higher-Spin Fermionic Gauge Fields and Their Electromagnetic Coupling, JHEP 08 (2012) 093 [arXiv:1206.1048] [INSPIRE].
  48. [48]
    M. Henneaux, G. Lucena Gómez and R. Rahman, Gravitational Interactions of Higher-Spin Fermions, JHEP 01 (2014) 087 [arXiv:1310.5152] [INSPIRE].
  49. [49]
    C. Sleight and M. Taronna, Feynman rules for higher-spin gauge fields on AdS d+1, JHEP 01 (2018) 060 [arXiv:1708.08668] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    R.R. Metsaev, Continuous-spin mixed-symmetry fields in AdS 5, J. Phys. A 51 (2018) 215401 [arXiv:1711.11007] [INSPIRE].ADSzbMATHGoogle Scholar
  51. [51]
    M.V. Khabarov and Yu.M. Zinoviev, Infinite (continuous) spin fields in the frame-like formalism, Nucl. Phys. B 928 (2018) 182 [arXiv:1711.08223] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    K.B. Alkalaev and M.A. Grigoriev, Continuous spin fields of mixed-symmetry type, JHEP 03 (2018) 030 [arXiv:1712.02317] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    K. Alkalaev, A. Chekmenev and M. Grigoriev, Unified formulation for helicity and continuous spin fermionic fields, JHEP 11 (2018) 050 [arXiv:1808.09385] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    N. Boulanger, C. Iazeolla and P. Sundell, Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture: I. General Formalism, JHEP 07 (2009) 013 [arXiv:0812.3615] [INSPIRE].
  55. [55]
    N. Boulanger, C. Iazeolla and P. Sundell, Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture. II. Oscillator Realization, JHEP 07 (2009) 014 [arXiv:0812.4438] [INSPIRE].
  56. [56]
    E.D. Skvortsov, Gauge fields in (A)dS d and Connections of its symmetry algebra, J. Phys. A 42 (2009) 385401 [arXiv:0904.2919] [INSPIRE].ADSzbMATHGoogle Scholar
  57. [57]
    E.D. Skvortsov, Gauge fields in (A)dS d within the unfolded approach: algebraic aspects, JHEP 01 (2010) 106 [arXiv:0910.3334] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    K.B. Alkalaev and M. Grigoriev, Unified BRST description of AdS gauge fields, Nucl. Phys. B 835 (2010) 197 [arXiv:0910.2690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    A. Reshetnyak, Constrained BRST-BFV Lagrangian formulations for Higher Spin Fields in Minkowski Spaces, arXiv:1803.04678 [INSPIRE].
  60. [60]
    I.L. Buchbinder and A. Reshetnyak, General Lagrangian Formulation for Higher Spin Fields with Arbitrary Index Symmetry. I. Bosonic fields, Nucl. Phys. B 862 (2012) 270 [arXiv:1110.5044] [INSPIRE].
  61. [61]
    C. Burdik and A. Reshetnyak, On representations of Higher Spin symmetry algebras for mixed-symmetry HS fields on AdS-spaces. Lagrangian formulation, J. Phys. Conf. Ser. 343 (2012) 012102 [arXiv:1111.5516] [INSPIRE].
  62. [62]
    A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained Higher Spins of Mixed Symmetry. I. Bose Fields, Nucl. Phys. B 815 (2009) 289 [arXiv:0810.4350] [INSPIRE].
  64. [64]
    E. Joung and K. Mkrtchyan, Weyl Action of Two-Column Mixed-Symmetry Field and Its Factorization Around (A)dS Space, JHEP 06 (2016) 135 [arXiv:1604.05330] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    R.R. Metsaev, Light-cone gauge cubic interaction vertices for massless fields in AdS 4, Nucl. Phys. B 936 (2018) 320 [arXiv:1807.07542] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    R.R. Metsaev, Mixed-symmetry fields in AdS 5 , conformal fields and AdS/CFT, JHEP 01 (2015) 077 [arXiv:1410.7314] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    R.R. Metsaev, Light cone form of field dynamics in Anti-de Sitter space-time and AdS/CFT correspondence, Nucl. Phys. B 563 (1999) 295 [hep-th/9906217] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    K. Alkalaev, FV-type action for AdS 5 mixed-symmetry fields, JHEP 03 (2011) 031 [arXiv:1011.6109] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    M.A. Vasiliev, Cubic Vertices for Symmetric Higher-Spin Gauge Fields in (A)dS d, Nucl. Phys. B 862 (2012) 341 [arXiv:1108.5921] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    N. Boulanger and E.D. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [arXiv:1107.5028] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    N. Boulanger, E.D. Skvortsov and Yu.M. Zinoviev, Gravitational cubic interactions for a simple mixed-symmetry gauge field in AdS and flat backgrounds, J. Phys. A 44 (2011) 415403 [arXiv:1107.1872] [INSPIRE].zbMATHGoogle Scholar
  72. [72]
    E. Joung and M. Taronna, Cubic interactions of massless higher spins in (A)dS: metric-like approach, Nucl. Phys. B 861 (2012) 145 [arXiv:1110.5918] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    E. Joung, L. Lopez and M. Taronna, Generating functions of (partially-)massless higher-spin cubic interactions, JHEP 01 (2013) 168 [arXiv:1211.5912] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    E. Joung, L. Lopez and M. Taronna, Solving the Noether procedure for cubic interactions of higher spins in (A)dS, J. Phys. A 46 (2013) 214020 [arXiv:1207.5520] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  75. [75]
    C. Sleight and M. Taronna, Higher Spin Interactions from Conformal Field Theory: The Complete Cubic Couplings, Phys. Rev. Lett. 116 (2016) 181602 [arXiv:1603.00022] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    D. Francia, G.L. Monaco and K. Mkrtchyan, Cubic interactions of Maxwell-like higher spins, JHEP 04 (2017) 068 [arXiv:1611.00292] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    O.A. Gelfond and M.A. Vasiliev, Current Interactions from the One-Form Sector of Nonlinear Higher-Spin Equations, Nucl. Phys. B 931 (2018) 383 [arXiv:1706.03718] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    N. Misuna, On current contribution to Fronsdal equations, Phys. Lett. B 778 (2018) 71 [arXiv:1706.04605] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  79. [79]
    V.E. Didenko, N.G. Misuna and M.A. Vasiliev, Lorentz covariant form of extended higher-spin equations, JHEP 07 (2018) 133 [arXiv:1712.09272] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    V.E. Didenko, O.A. Gelfond, A.V. Korybut and M.A. Vasiliev, Homotopy Properties and Lower-Order Vertices in Higher-Spin Equations, J. Phys. A 51 (2018) 465202 [arXiv:1807.00001] [INSPIRE].ADSGoogle Scholar
  81. [81]
    D.S. Ponomarev and M.A. Vasiliev, Frame-Like Action and Unfolded Formulation for Massive Higher-Spin Fields, Nucl. Phys. B 839 (2010) 466 [arXiv:1001.0062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    S.M. Kuzenko and M. Tsulaia, Off-shell massive N = 1 supermultiplets in three dimensions, Nucl. Phys. B 914 (2017) 160 [arXiv:1609.06910] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  83. [83]
    I.L. Buchbinder, S.J. Gates and K. Koutrolikos, Conserved higher spin supercurrents for arbitrary spin massless supermultiplets and higher spin superfield cubic interactions, JHEP 08 (2018) 055 [arXiv:1805.04413] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  84. [84]
    I.L. Buchbinder and K. Koutrolikos, BRST Analysis of the Supersymmetric Higher Spin Field Models, JHEP 12 (2015) 106 [arXiv:1510.06569] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  85. [85]
    I.L. Buchbinder, S.J. Gates and K. Koutrolikos, Higher Spin Superfield interactions with the Chiral Supermultiplet: Conserved Supercurrents and Cubic Vertices, Universe 4 (2018) 6 [arXiv:1708.06262] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  86. [86]
    I.L. Buchbinder, S. Fedoruk, A.P. Isaev and A. Rusnak, Model of massless relativistic particle with continuous spin and its twistorial description, JHEP 07 (2018) 031 [arXiv:1805.09706] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  87. [87]
    T. Adamo, S. Nakach and A.A. Tseytlin, Scattering of conformal higher spin fields, JHEP 07 (2018) 016 [arXiv:1805.00394] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    D.V. Uvarov, Ambitwistors, oscillators and massless fields on AdS 5, Phys. Lett. B 762 (2016) 415 [arXiv:1607.05233] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  89. [89]
    D.V. Uvarov, Massless spinning particle and null-string on AdS d : projective-space approach, J. Phys. A 51 (2018) 285402 [arXiv:1707.05761] [INSPIRE].zbMATHGoogle Scholar
  90. [90]
    D. Sorokin and M. Tsulaia, Higher Spin Fields in Hyperspace. A Review, Universe 4 (2018) 7 [arXiv:1710.08244] [INSPIRE].
  91. [91]
    T. Basile, X. Bekaert and N. Boulanger, Flato-Fronsdal theorem for higher-order singletons, JHEP 11 (2014) 131 [arXiv:1410.7668] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    T. Basile, X. Bekaert and E. Joung, Conformal Higher-Spin Gravity: Linearized Spectrum = Symmetry Algebra, JHEP 11 (2018) 167 [arXiv:1808.07728] [INSPIRE].CrossRefGoogle Scholar
  93. [93]
    T. Basile, E. Joung, S. Lal and W. Li, Character Integral Representation of Zeta function in AdS d+1 : I. Derivation of the general formula, JHEP 10 (2018) 091 [arXiv:1805.05646] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsP.N. Lebedev Physical InstituteMoscowRussia

Personalised recommendations