Advertisement

Journal of High Energy Physics

, 2018:51 | Cite as

A concrete composite 2-Higgs doublet model

  • Stefania De Curtis
  • Luigi Delle Rose
  • Stefano Moretti
  • Kei Yagyu
Open Access
Regular Article - Theoretical Physics

Abstract

We consider a Composite Higgs Model (CHM) with two isospin doublet Higgs fields arising as pseudo Nambu-Goldstone bosons from a SO(6) → SO(4) × SO(2) breaking. The main focus of this work is to explicitly compute the properties of these Higgses in terms of the fundamental parameters of the composite sector such as masses, Yukawa and gauge couplings of the new spin-1 and spin-1/2 resonances. Concretely, we calculate the Higgs potential at one-loop level through the Coleman-Weinberg mechanism from the explicit breaking of the SO(6) global symmetry by the partial compositeness of fermions and gauge bosons. We derive then the phenomenological properties of the Higgs states and highlight the main signatures of this Composite 2-Higgs Doublet Model at the Large Hadron Collider, including modifications to the SM-like Higgs couplings as well as production and decay channels of heavier Higgs bosons. We also consider flavour bounds that are typical of CHMs with more than one Higgs doublet.

Keywords

Beyond Standard Model Higgs Physics Technicolor and Composite Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].
  3. [3]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].
  4. [4]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  5. [5]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  6. [6]
    S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].
  7. [7]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Pomarol and F. Riva, The composite Higgs and light resonance connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].
  9. [9]
    D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    O. Matsedonskyi, G. Panico and A. Wulzer, Top partners searches and composite Higgs models, JHEP 04 (2016) 003 [arXiv:1512.04356] [INSPIRE].ADSGoogle Scholar
  11. [11]
    O. Matsedonskyi, G. Panico and A. Wulzer, On the interpretation of top partners searches, JHEP 12 (2014) 097 [arXiv:1409.0100] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Mrazek et al., The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].
  13. [13]
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].
  14. [14]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].
  15. [15]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].
  16. [16]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].
  17. [17]
    S. De Curtis, L. Delle Rose, S. Moretti and K. Yagyu, Supersymmetry versus Compositeness: 2HDMs tell the story, Phys. Lett. B 786 (2018) 189 [arXiv:1803.01865] [INSPIRE].
  18. [18]
    K. Agashe and R. Contino, Composite Higgs-mediated FCNC, Phys. Rev. D 80 (2009) 075016 [arXiv:0906.1542] [INSPIRE].
  19. [19]
    M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    R. Barbieri et al., A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].
  21. [21]
    G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, Perturbative unitarity bounds in composite two-Higgs doublet models, Phys. Rev. D 94 (2016) 055017 [arXiv:1602.06437] [INSPIRE].
  23. [23]
    S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, LHC phenomenology of composite 2-Higgs doublet models, Eur. Phys. J. C 77 (2017) 513 [arXiv:1610.02687] [INSPIRE].
  24. [24]
    S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, Single and double SM-like Higgs boson production at future electron-positron colliders in composite 2HDMs, Phys. Rev. D 95 (2017) 095026 [arXiv:1702.07260] [INSPIRE].
  25. [25]
    A. Barroso, P.M. Ferreira, I.P. Ivanov and R. Santos, Metastability bounds on the two Higgs doublet model, JHEP 06 (2013) 045 [arXiv:1303.5098] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [Erratum ibid. D 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].
  27. [27]
    H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model. II. The significance of tanβ, Phys. Rev. D 74 (2006) 015018 [Erratum ibid. D 74 (2006) 059905] [hep-ph/0602242] [INSPIRE].
  28. [28]
    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].
  29. [29]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the tuning and the mass of the composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    LHC Higgs Cross Section Working Group collaboration, A. David et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, arXiv:1209.0040 [INSPIRE].
  31. [31]
    P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].
  32. [32]
    P. Bechtle et al., HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].
  33. [33]
    ATLAS collaboration, Search for diboson resonances with boson-tagged jets in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 777 (2018) 91 [arXiv:1708.04445] [INSPIRE].
  34. [34]
    D. Barducci et al., Exploring Drell-Yan signals from the 4D composite Higgs model at the LHC, JHEP 04 (2013) 152 [arXiv:1210.2927] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    E. Accomando et al., Drell-Yan production of multi Z -bosons at the LHC within non-universal ED and 4D composite Higgs models, JHEP 07 (2016) 068 [arXiv:1602.05438] [INSPIRE].
  36. [36]
    ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying into high-p T W bosons and top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 08 (2018) 048 [arXiv:1806.01762] [INSPIRE].
  37. [37]
    ATLAS, CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  38. [38]
    A. Belyaev et al., Anatomy of the inert two Higgs doublet model in the light of the LHC and non-LHC dark matter searches, Phys. Rev. D 97 (2018) 035011 [arXiv:1612.00511] [INSPIRE].
  39. [39]
    T. Enomoto and R. Watanabe, Flavor constraints on the two Higgs doublet models of Z 2 symmetric and aligned types, JHEP 05 (2016) 002 [arXiv:1511.05066] [INSPIRE].
  40. [40]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    CMS collaboration, Search for Higgs boson pair production in the final state containing two photons and two bottom quarks in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-008 (2017).
  42. [42]
    CMS collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: Contribution to the Snowmass Process, in the proceedings of the 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1307.7135 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Stefania De Curtis
    • 1
  • Luigi Delle Rose
    • 2
    • 1
  • Stefano Moretti
    • 2
    • 3
  • Kei Yagyu
    • 4
  1. 1.INFN — Sezione di Firenze, and Department of Physics and AstronomyUniversity of FlorenceSesto FiorentinoItaly
  2. 2.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  3. 3.Particle Physics Department, Rutherford Appleton LaboratoryOxonU.K.
  4. 4.Seikei University, MusashinoTokyoJapan

Personalised recommendations