Advertisement

Journal of High Energy Physics

, 2018:49 | Cite as

Transverse momentum broadening and collinear radiation at NLO in the \( \mathcal{N}=4 \) SYM plasma

  • Jacopo Ghiglieri
  • HyungJoo Kim
Open Access
Regular Article - Theoretical Physics

Abstract

We compute \( \mathcal{O} \)(g) NLO corrections to the transverse scattering kernel and transverse momentum broadening coefficient \( \widehat{q} \) of weakly-coupled \( \mathcal{N}=4 \) SYM. Based on this, we also compute NLO correction to the collinear splitting rates. For \( \widehat{q} \) we find that the NLO/LO ratio is similar to the QCD one, with large NLO corrections. This is contrasted by our findings for the collinear splitting rate, which show a much better convergence in SYM than in QCD, providing further support to earlier expectations that NLO corrections have signs and relative magnitudes controlled by the specifics of the theory. We also compare the ratio of \( \widehat{q} \) in QCD and in \( \mathcal{N}=4 \) theory to strong coupling expectations.

Keywords

Holography and quark-gluon plasmas Quark-Gluon Plasma Thermal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, Cambridge University Press, Cambridge, U.K., (2011) [arXiv:1101.0618] [INSPIRE].
  5. [5]
    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H.B. Meyer, Transport properties of the quark-gluon plasma: a lattice QCD perspective, Eur. Phys. J. A 47 (2011) 86 [arXiv:1104.3708] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B. Hassanain and M. Schvellinger, Plasma photoemission from string theory, JHEP 12 (2012) 095 [arXiv:1209.0427] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    P. Benincasa and A. Buchel, Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP 01 (2006) 103 [hep-th/0510041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Buchel, Shear viscosity of boost invariant plasma at finite coupling, Nucl. Phys. B 802 (2008) 281 [arXiv:0801.4421] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Buchel, Shear viscosity of CFT plasma at finite coupling, Phys. Lett. B 665 (2008) 298 [arXiv:0804.3161] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    S.C. Huot, S. Jeon and G.D. Moore, Shear viscosity in weakly coupled N = 4 super Yang-Mills theory compared to QCD, Phys. Rev. Lett. 98 (2007) 172303 [hep-ph/0608062] [INSPIRE].
  16. [16]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from quark gluon plasma: complete leading order results, JHEP 12 (2001) 009 [hep-ph/0111107] [INSPIRE].
  17. [17]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 1. Leading log results, JHEP 11 (2000) 001 [hep-ph/0010177] [INSPIRE].
  18. [18]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log, JHEP 05 (2003) 051 [hep-ph/0302165] [INSPIRE].
  19. [19]
    S. Caron-Huot, O(g) plasma effects in jet quenching, Phys. Rev. D 79 (2009) 065039 [arXiv:0811.1603] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J. Ghiglieri and D. Teaney, Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas, Int. J. Mod. Phys. E 24 (2015) 1530013 [arXiv:1502.03730] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Ghiglieri, J. Hong, A. Kurkela, E. Lu, G.D. Moore and D. Teaney, Next-to-leading order thermal photon production in a weakly coupled quark-gluon plasma, JHEP 05 (2013) 010 [arXiv:1302.5970] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Ghiglieri, G.D. Moore and D. Teaney, QCD shear viscosity at (almost) NLO, JHEP 03 (2018) 179 [arXiv:1802.09535] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    J. Ghiglieri, G.D. Moore and D. Teaney, Second-order hydrodynamics in next-to-leading-order QCD, Phys. Rev. Lett. 121 (2018) 052302 [arXiv:1805.02663] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. d’Enterria, Jet quenching, Landolt-Bornstein 23 (2010) 471 [arXiv:0902.2011] [INSPIRE].ADSGoogle Scholar
  25. [25]
    U.A. Wiedemann, Jet quenching in heavy ion collisions, arXiv:0908.2306 [INSPIRE].
  26. [26]
    A. Majumder and M. Van Leeuwen, The theory and phenomenology of perturbative QCD based jet quenching, Prog. Part. Nucl. Phys. 66 (2011) 41 [arXiv:1002.2206] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Roland, K. Safarik and P. Steinberg, Heavy-ion collisions at the LHC, Prog. Part. Nucl. Phys. 77 (2014) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G.-Y. Qin and X.-N. Wang, Jet quenching in high-energy heavy-ion collisions, Int. J. Mod. Phys. E 24 (2015) 1530014 [arXiv:1511.00790] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Connors, C. Nattrass, R. Reed and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90 (2018) 025005 [arXiv:1705.01974] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    JET collaboration, K.M. Burke et al., Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C 90 (2014) 014909 [arXiv:1312.5003] [INSPIRE].
  32. [32]
    N. Armesto et al., Comparison of jet quenching formalisms for a quark-gluon plasmabrick’, Phys. Rev. C 86 (2012) 064904 [arXiv:1106.1106] [INSPIRE].ADSGoogle Scholar
  33. [33]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].
  34. [34]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].
  35. [35]
    F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet quenching parameter, redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].ADSGoogle Scholar
  36. [36]
    N. Armesto, J.D. Edelstein and J. Mas, Jet quenching at finitet Hooft coupling and chemical potential from AdS/CFT, JHEP 09 (2006) 039 [hep-ph/0606245] [INSPIRE].
  37. [37]
    S.S. Gubser, Momentum fluctuations of heavy quarks in the gauge-string duality, Nucl. Phys. B 790 (2008) 175 [hep-th/0612143] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    J. Casalderrey-Solana and D. Teaney, Transverse momentum broadening of a fast quark in a N = 4 Yang-Mills plasma, JHEP 04 (2007) 039 [hep-th/0701123] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    P. Aurenche, F. Gelis and H. Zaraket, A simple sum rule for the thermal gluon spectral function and applications, JHEP 05 (2002) 043 [hep-ph/0204146] [INSPIRE].
  40. [40]
    P.B. Arnold and W. Xiao, High-energy jet quenching in weakly-coupled quark-gluon plasmas, Phys. Rev. D 78 (2008) 125008 [arXiv:0810.1026] [INSPIRE].ADSGoogle Scholar
  41. [41]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP 01 (2003) 030 [hep-ph/0209353] [INSPIRE].
  42. [42]
    J. Ghiglieri, G.D. Moore and D. Teaney, Jet-medium interactions at NLO in a weakly-coupled quark-gluon plasma, JHEP 03 (2016) 095 [arXiv:1509.07773] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Benzke, N. Brambilla, M.A. Escobedo and A. Vairo, Gauge invariant definition of the jet quenching parameter, JHEP 02 (2013) 129 [arXiv:1208.4253] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    E. Braaten, Solution to the perturbative infrared catastrophe of hot gauge theories, Phys. Rev. Lett. 74 (1995) 2164 [hep-ph/9409434] [INSPIRE].
  45. [45]
    E. Braaten and A. Nieto, Effective field theory approach to high temperature thermodynamics, Phys. Rev. D 51 (1995) 6990 [hep-ph/9501375] [INSPIRE].
  46. [46]
    E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996) 3421 [hep-ph/9510408] [INSPIRE].
  47. [47]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the Standard Model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].
  48. [48]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, 3D SU(N) + adjoint Higgs theory and finite temperature QCD, Nucl. Phys. B 503 (1997) 357 [hep-ph/9704416] [INSPIRE].
  49. [49]
    A. Nieto and M.H.G. Tytgat, Effective field theory approach to N = 4 supersymmetric Yang-Mills at finite temperature, hep-th/9906147 [INSPIRE].
  50. [50]
    M.A. Vazquez-Mozo, A note on supersymmetric Yang-Mills thermodynamics, Phys. Rev. D 60 (1999) 106010 [hep-th/9905030] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    C.-J. Kim and S.-J. Rey, Thermodynamics of large N super Yang-Mills theory and AdS/CFT correspondence, Nucl. Phys. B 564 (2000) 430 [hep-th/9905205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    A. Anisimov, D. Besak and D. Bödeker, Thermal production of relativistic Majorana neutrinos: strong enhancement by multiple soft scattering, JCAP 03 (2011) 042 [arXiv:1012.3784] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D. Besak and D. Bödeker, Thermal production of ultrarelativistic right-handed neutrinos: complete leading-order results, JCAP 03 (2012) 029 [arXiv:1202.1288] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Ghiglieri and M. Laine, Neutrino dynamics below the electroweak crossover, JCAP 07 (2016) 015 [arXiv:1605.07720] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. D’Eramo, M. Lekaveckas, H. Liu and K. Rajagopal, Momentum broadening in weakly coupled quark-gluon plasma (with a view to finding the quasiparticles within liquid quark-gluon plasma), JHEP 05 (2013) 031 [arXiv:1211.1922] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Laine, A non-perturbative contribution to jet quenching, Eur. Phys. J. C 72 (2012) 2233 [arXiv:1208.5707] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Panero, K. Rummukainen and A. Schäfer, Lattice study of the jet quenching parameter, Phys. Rev. Lett. 112 (2014) 162001 [arXiv:1307.5850] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    E. Braaten and R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis, Nucl. Phys. B 337 (1990) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J. Frenkel and J.C. Taylor, High temperature limit of thermal QCD, Nucl. Phys. B 334 (1990) 199 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    A. Czajka and S. Mrowczynski, N = 4 super Yang-Mills plasma, Phys. Rev. D 86 (2012) 025017 [arXiv:1203.1856] [INSPIRE].ADSGoogle Scholar
  62. [62]
    S. Caron-Huot, On supersymmetry at finite temperature, Phys. Rev. D 79 (2009) 125002 [arXiv:0808.0155] [INSPIRE].ADSGoogle Scholar
  63. [63]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].
  64. [64]
    S. Jeon and G.D. Moore, Energy loss of leading partons in a thermal QCD medium, Phys. Rev. C 71 (2005) 034901 [hep-ph/0309332] [INSPIRE].
  65. [65]
    G. Molière, Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld (in German), Z. Naturforsch. A 2 (1947) 133.Google Scholar
  66. [66]
    G. Molière, Theorie der Streuung schneller geladener Teilchen II. Mehrfach-und Vielfachstreuung (in German), Z. Naturforsch. A 3 (1948) 78.Google Scholar
  67. [67]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    S. Borsányi, Z. Fodor, C. Hölbling, S.D. Katz, S. Krieg and K.K. Szabo, Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B 730 (2014) 99 [arXiv:1309.5258] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    HotQCD collaboration, A. Bazavov et al., Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].
  70. [70]
    F. D’Eramo, K. Rajagopal and Y. Yin, Molière scattering in quark-gluon plasma: finding point-like scatterers in a liquid, arXiv:1808.03250 [INSPIRE].
  71. [71]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from ultrarelativistic plasmas, JHEP 11 (2001) 057 [hep-ph/0109064] [INSPIRE].
  72. [72]
    P. Aurenche, F. Gelis, G.D. Moore and H. Zaraket, Landau-Pomeranchuk-Migdal resummation for dilepton production, JHEP 12 (2002) 006 [hep-ph/0211036] [INSPIRE].
  73. [73]
    S. Catterall, D.B. Kaplan and M. Ünsal, Exact lattice supersymmetry, Phys. Rept. 484 (2009) 71 [arXiv:0903.4881] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    G. Bergner and S. Catterall, Supersymmetry on the lattice, Int. J. Mod. Phys. A 31 (2016) 1643005 [arXiv:1603.04478] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  2. 2.Department of PhysicsYonsei UniversitySeoulKorea

Personalised recommendations