Advertisement

Journal of High Energy Physics

, 2018:44 | Cite as

Two Higgs doublets and a complex singlet: disentangling the decay topologies and associated phenomenology

  • Sebastian BaumEmail author
  • Nausheen R. Shah
Open Access
Regular Article - Theoretical Physics

Abstract

We present a systematic study of an extension of the Standard Model (SM) with two Higgs doublets and one complex singlet (2HDM+S). In order to gain analytical understanding of the parameter space, we re-parameterize the 27 parameters in the Lagrangian by quantities more closely related to physical observables: physical masses, mixing angles, trilinear and quadratic couplings, and vacuum expectation values. Embedding the 125 GeV SM-like Higgs boson observed at the LHC places stringent constraints on the parameter space. In particular, the mixing of the SM-like interaction state with the remaining states is severely constrained, requiring approximate alignment without decoupling in the region of parameter space where the additional Higgs bosons are light enough to be accessible at the LHC. In contrast to 2HDM models, large branching ratios of the heavy Higgs bosons into two lighter Higgs bosons or a light Higgs and a Z boson, so-called Higgs cascade decays, are ubiquitous in the 2HDM+S. Using currently available limits, future projections, and our own collider simulations, we show that combining different final states arising from Higgs cascades would allow to probe most of the interesting region of parameter space with Higgs boson masses up to 1 TeV at the LHC with L = 3000 fb−1 of data.

Keywords

Beyond Standard Model Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  4. [4]
    CMS collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \( \sqrt{s}=13 \) TeV, JHEP 11 (2017) 047 [arXiv:1706.09936] [INSPIRE].
  5. [5]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  6. [6]
    CMS collaboration, Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-042 (2016).
  7. [7]
    CMS collaboration, Combined measurements of the Higgs bosons couplings at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-031 (2017).
  8. [8]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay in the HZZ →4ℓ and Hγγ channels using \( \sqrt{s}=13 \) TeV pp collision data collected with the ATLAS experiment, ATLAS-CONF-2017-047 (2017).
  9. [9]
    S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex Singlet Extension of the Standard Model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].
  11. [11]
    J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M.D. Campos, D. Cogollo, M. Lindner, T. Melo, F.S. Queiroz and W. Rodejohann, Neutrino Masses and Absence of Flavor Changing Interactions in the 2HDM from Gauge Principles, JHEP 08 (2017) 092 [arXiv:1705.05388] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D.A. Camargo, L. Delle Rose, S. Moretti and F.S. Queiroz, Collider Bounds on 2-Higgs Doublet Models with U(1)X Gauge Symmetries, arXiv:1805.08231 [INSPIRE].
  14. [14]
    S. Baum, M. Carena, N.R. Shah and C.E.M. Wagner, Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM, JHEP 04 (2018) 069 [arXiv:1712.09873] [INSPIRE].
  15. [15]
    M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].
  16. [16]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models: m h = 125 GeV, Phys. Rev. D 92 (2015) 075004 [arXiv:1507.00933] [INSPIRE].
  19. [19]
    J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models. II. m H = 125 GeV, Phys. Rev. D 93 (2016) 035027 [arXiv:1511.03682] [INSPIRE].
  20. [20]
    P. Basler, P.M. Ferreira, M. Mühlleitner and R. Santos, High scale impact in alignment and decoupling in two-Higgs doublet models, Phys. Rev. D 97 (2018) 095024 [arXiv:1710.10410] [INSPIRE].
  21. [21]
    A. Cherchiglia, D. Stöckinger and H. Stöckinger-Kim, Muon g-2 in the 2HDM: maximum results and detailed phenomenology, Phys. Rev. D 98 (2018) 035001 [arXiv:1711.11567] [INSPIRE].
  22. [22]
    G. Chalons and F. Domingo, Analysis of the Higgs potentials for two doublets and a singlet, Phys. Rev. D 86 (2012) 115024 [arXiv:1209.6235] [INSPIRE].
  23. [23]
    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Alignment limit of the NMSSM Higgs sector, Phys. Rev. D 93 (2016) 035013 [arXiv:1510.09137] [INSPIRE].
  24. [24]
    C.-Y. Chen, M. Freid and M. Sher, Next-to-minimal two Higgs doublet model, Phys. Rev. D 89 (2014) 075009 [arXiv:1312.3949] [INSPIRE].
  25. [25]
    S. von Buddenbrock et al., Phenomenological signatures of additional scalar bosons at the LHC, Eur. Phys. J. C 76 (2016) 580 [arXiv:1606.01674] [INSPIRE].
  26. [26]
    M. Muhlleitner, M.O.P. Sampaio, R. Santos and J. Wittbrodt, The N2HDM under Theoretical and Experimental Scrutiny, JHEP 03 (2017) 094 [arXiv:1612.01309] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Mühlleitner, M.O.P. Sampaio, R. Santos and J. Wittbrodt, Phenomenological Comparison of Models with Extended Higgs Sectors, JHEP 08 (2017) 132 [arXiv:1703.07750] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. von Buddenbrock, A.S. Cornell, A. Fadol, M. Kumar, B. Mellado and X. Ruan, Multi-lepton signatures of additional scalar bosons beyond the Standard Model at the LHC, J. Phys. G 45 (2018) 115003 [arXiv:1711.07874] [INSPIRE].
  29. [29]
    C. Englert, R. Kogler, H. Schulz and M. Spannowsky, Higgs coupling measurements at the LHC, Eur. Phys. J. C 76 (2016) 393 [arXiv:1511.05170] [INSPIRE].
  30. [30]
    D.M. Asner et al., ILC Higgs White Paper, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, U.S.A., July 29 - August 6, 2013, arXiv:1310.0763 [INSPIRE].
  31. [31]
    D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].
  32. [32]
    R. Barcelo and M. Masip, Extra Higgs bosons in \( t\overline{t} \) production at the LHC, Phys. Rev. D 81 (2010) 075019 [arXiv:1001.5456] [INSPIRE].
  33. [33]
    V. Barger, W.-Y. Keung and B. Yencho, Azimuthal Correlations in Top Pair Decays and The Effects of New Heavy Scalars, Phys. Rev. D 85 (2012) 034016 [arXiv:1112.5173] [INSPIRE].
  34. [34]
    Y. Bai and W.-Y. Keung, Can vanishing mass-on-shell interactions generate a dip at colliders?, Int. J. Mod. Phys. A 30 (2015) 1550120 [arXiv:1407.6355] [INSPIRE].
  35. [35]
    S. Jung, J. Song and Y.W. Yoon, Dip or nothingness of a Higgs resonance from the interference with a complex phase, Phys. Rev. D 92 (2015) 055009 [arXiv:1505.00291] [INSPIRE].
  36. [36]
    N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The Hunt for the Rest of the Higgs Bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Gori, I.-W. Kim, N.R. Shah and K.M. Zurek, Closing the Wedge: Search Strategies for Extended Higgs Sectors with Heavy Flavor Final States, Phys. Rev. D 93 (2016) 075038 [arXiv:1602.02782] [INSPIRE].
  38. [38]
    M. Carena and Z. Liu, Challenges and opportunities for heavy scalar searches in the \( t\overline{t} \) channel at the LHC, JHEP 11 (2016) 159 [arXiv:1608.07282] [INSPIRE].
  39. [39]
    Z. Kang, J. Li, T. Li, D. Liu and J. Shu, Probing the CP-even Higgs sector via H 3H 2 H 1 in the natural next-to-minimal supersymmetric standard model, Phys. Rev. D 88 (2013) 015006 [arXiv:1301.0453] [INSPIRE].
  40. [40]
    S.F. King, M. Mühlleitner, R. Nevzorov and K. Walz, Discovery Prospects for NMSSM Higgs Bosons at the High-Energy Large Hadron Collider, Phys. Rev. D 90 (2014) 095014 [arXiv:1408.1120] [INSPIRE].
  41. [41]
    U. Ellwanger and M. Rodriguez-Vazquez, Discovery Prospects of a Light Scalar in the NMSSM, JHEP 02 (2016) 096 [arXiv:1512.04281] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Costa, M. Mühlleitner, M.O.P. Sampaio and R. Santos, Singlet Extensions of the Standard Model at LHC Run 2: Benchmarks and Comparison with the NMSSM, JHEP 06 (2016) 034 [arXiv:1512.05355] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Baum, K. Freese, N.R. Shah and B. Shakya, NMSSM Higgs boson search strategies at the LHC and the mono-Higgs signature in particular, Phys. Rev. D 95 (2017) 115036 [arXiv:1703.07800] [INSPIRE].
  44. [44]
    U. Ellwanger and M. Rodriguez-Vazquez, Simultaneous search for extra light and heavy Higgs bosons via cascade decays, JHEP 11 (2017) 008 [arXiv:1707.08522] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M.E. Krauss, T. Opferkuch and F. Staub, The Ultraviolet Landscape of Two-Higgs Doublet Models, arXiv:1807.07581 [INSPIRE].
  46. [46]
    H. Georgi and D.V. Nanopoulos, Suppression of Flavor Changing Effects From Neutral Spinless Meson Exchange in Gauge Theories, Phys. Lett. B 82 (1979) 95 [INSPIRE].
  47. [47]
    J.F. Donoghue and L.F. Li, Properties of Charged Higgs Bosons, Phys. Rev. D 19 (1979) 945 [INSPIRE].
  48. [48]
    J. Gunion, H. Haber, G. Kane and S. Dawson, The Higgs Hunters Guide, Frontiers in Physics, Westview Press, (2008).Google Scholar
  49. [49]
    L. Lavoura and J.P. Silva, Fundamental CP-violating quantities in a SU(2) × U(1) model with many Higgs doublets, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276] [INSPIRE].
  50. [50]
    F.J. Botella and J.P. Silva, Jarlskog - like invariants for theories with scalars and fermions, Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288] [INSPIRE].
  51. [51]
    G.C. Branco, L. Lavoura and S.J.P., CP violation, Oxford University Press, Oxford, U.K., (1999).Google Scholar
  52. [52]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  53. [53]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    P.S. Bhupal Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP 12 (2014) 024 [Erratum ibid. 11 (2015) 147] [arXiv:1408.3405] [INSPIRE].
  55. [55]
    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Complementarity between Nonstandard Higgs Boson Searches and Precision Higgs Boson Measurements in the MSSM, Phys. Rev. D 91 (2015) 035003 [arXiv:1410.4969] [INSPIRE].
  56. [56]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  57. [57]
    Y. Cai and T. Li, Singlet dark matter in a type-II two Higgs doublet model, Phys. Rev. D 88 (2013) 115004 [arXiv:1308.5346] [INSPIRE].
  58. [58]
    R. Gaitan, E.A. Garces and J.H.M. de Oca, Singlet scalar Dark Matter in Dark Two Higgs Doublet Model, arXiv:1410.5462 [INSPIRE].
  59. [59]
    A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Extending two-Higgs-doublet models by a singlet scalar fieldthe Case for Dark Matter, JHEP 11 (2014) 105 [arXiv:1408.2106] [INSPIRE].
  60. [60]
    L. Wang, R. Shi and X.-F. Han, Wrong sign Yukawa coupling of the 2HDM with a singlet scalar as dark matter confronted with dark matter and Higgs data, Phys. Rev. D 96 (2017) 115025 [arXiv:1708.06882] [INSPIRE].
  61. [61]
    L. Wang, X.-F. Han and B. Zhu, Light scalar dark matter extension of the type-II two-Higgs-doublet model, Phys. Rev. D 98 (2018) 035024 [arXiv:1801.08317] [INSPIRE].
  62. [62]
    ATLAS collaboration, A search for resonances decaying into a Higgs boson and a new particle X in the XHqqbb final state with the ATLAS detector, Phys. Lett. B 779 (2018) 24 [arXiv:1709.06783] [INSPIRE].
  63. [63]
    ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, arXiv:1804.06174 [INSPIRE].
  64. [64]
    A.A. Petrov and W. Shepherd, Searching for dark matter at LHC with Mono-Higgs production, Phys. Lett. B 730 (2014) 178 [arXiv:1311.1511] [INSPIRE].
  65. [65]
    L. Carpenter, A. DiFranzo, M. Mulhearn, C. Shimmin, S. Tulin and D. Whiteson, Mono-Higgs-boson: A new collider probe of dark matter, Phys. Rev. D 89 (2014) 075017 [arXiv:1312.2592] [INSPIRE].
  66. [66]
    A. Berlin, T. Lin and L.-T. Wang, Mono-Higgs Detection of Dark Matter at the LHC, JHEP 06 (2014) 078 [arXiv:1402.7074] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J.M. No, Looking through the pseudoscalar portal into dark matter: Novel mono-Higgs and mono-Z signatures at the LHC, Phys. Rev. D 93 (2016) 031701 [arXiv:1509.01110] [INSPIRE].
  68. [68]
    L. Basso, Resonant mono Higgs at the LHC, JHEP 04 (2016) 087 [arXiv:1512.06381] [INSPIRE].ADSGoogle Scholar
  69. [69]
    W. Abdallah, A. Hammad, S. Khalil and S. Moretti, Search for Mono-Higgs Signals at the LHC in the B-L Supersymmetric Standard Model, Phys. Rev. D 95 (2017) 055019 [arXiv:1608.07500] [INSPIRE].
  70. [70]
    S.P. Liew, M. Papucci, A. Vichi and K.M. Zurek, Mono-X Versus Direct Searches: Simplified Models for Dark Matter at the LHC, JHEP 06 (2017) 082 [arXiv:1612.00219] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Bauer, U. Haisch and F. Kahlhoefer, Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators, JHEP 05 (2017) 138 [arXiv:1701.07427] [INSPIRE].
  72. [72]
    ATLAS collaboration, Search for Dark Matter in Events with Missing Transverse Momentum and a Higgs Boson Decaying to Two Photons in pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 115 (2015) 131801 [arXiv:1506.01081] [INSPIRE].
  73. [73]
    ATLAS collaboration, Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 93 (2016) 072007 [arXiv:1510.06218] [INSPIRE].
  74. [74]
    ATLAS collaboration, Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 765 (2017) 11 [arXiv:1609.04572] [INSPIRE].
  75. [75]
    CMS collaboration, Search for associated production of dark matter with a Higgs boson decaying to \( \mathrm{b}\overline{\mathrm{b}} \) or γγ at \( \sqrt{s}=13 \) TeV, JHEP 10 (2017) 180 [arXiv:1703.05236] [INSPIRE].
  76. [76]
    ATLAS collaboration, Search for dark matter in association with a Higgs boson decaying to two photons at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 112004 [arXiv:1706.03948] [INSPIRE].
  77. [77]
    CMS collaboration, Search for Dark Matter Produced in Association with a Higgs Boson Decaying to Two Photons, CMS-PAS-EXO-16-054 (2016).
  78. [78]
    ATLAS collaboration, Search for Dark Matter Produced in Association with a Higgs Boson Decaying to \( b\overline{b} \) using 36 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 119 (2017) 181804 [arXiv:1707.01302] [INSPIRE].
  79. [79]
    CMS collaboration, Search for dark matter produced in association with a Higgs boson decaying to γγ or τ + τ at \( \sqrt{s}=13 \) T eV with the CMS detector, CMS-PAS-EXO-16-055 (2016).
  80. [80]
    CMS collaboration, Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons, Phys. Lett. B 759 (2016) 369 [arXiv:1603.02991] [INSPIRE].
  81. [81]
    CMS collaboration, Search for dark matter and unparticles produced in association with a Z boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 052011 [Erratum ibid. D 97 (2018) 099903] [arXiv:1511.09375] [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 763 (2016) 251 [arXiv:1608.02372] [INSPIRE].
  83. [83]
    CMS collaboration, Search for dark matter in Z + E Tmiss events using 12.9 fb −1 of 2016 data, CMS-PAS-EXO-16-038 (2016).
  84. [84]
    ATLAS collaboration, Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 776 (2018) 318 [arXiv:1708.09624] [INSPIRE].
  85. [85]
    ATLAS collaboration, Search for heavy ZZ resonances in the ℓ + + and \( {\ell}^{+}{\ell}^{-}\nu \overline{\nu} \) final states using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 293 [arXiv:1712.06386] [INSPIRE].
  86. [86]
    CMS collaboration, Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at \( \sqrt{s}=13 \) TeV, JHEP 07 (2017) 014 [arXiv:1703.01651] [INSPIRE].
  87. [87]
    CMS collaboration, Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 97 (2018) 092005 [arXiv:1712.02345] [INSPIRE].
  88. [88]
    N.F. Bell, J.B. Dent, A.J. Galea, T.D. Jacques, L.M. Krauss and T.J. Weiler, Searching for Dark Matter at the LHC with a Mono-Z, Phys. Rev. D 86 (2012) 096011 [arXiv:1209.0231] [INSPIRE].
  89. [89]
    L.M. Carpenter, A. Nelson, C. Shimmin, T.M.P. Tait and D. Whiteson, Collider searches for dark matter in events with a Z boson and missing energy, Phys. Rev. D 87 (2013) 074005 [arXiv:1212.3352] [INSPIRE].
  90. [90]
    D. Yang and Q. Li, Probing the Dark Sector through Mono-Z Boson Leptonic Decays, JHEP 02 (2018) 090 [arXiv:1711.09845] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    ATLAS collaboration, Search for resonances in diphoton events at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 09 (2016) 001 [arXiv:1606.03833] [INSPIRE].
  92. [92]
    CMS collaboration, Search for Resonant Production of High-Mass Photon Pairs in Proton-Proton Collisions at \( \sqrt{s}=8 \) and 13 TeV, Phys. Rev. Lett. 117 (2016) 051802 [arXiv:1606.04093] [INSPIRE].
  93. [93]
    CMS collaboration, Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search, Phys. Lett. B 767 (2017) 147 [arXiv:1609.02507] [INSPIRE].
  94. [94]
    ATLAS collaboration, Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton-proton collisions collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 775 (2017) 105 [arXiv:1707.04147] [INSPIRE].
  95. [95]
    ATLAS collaboration, Search for the standard model Higgs boson produced in association with top quarks and decaying into a bb pair in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 97 (2018) 072016 [arXiv:1712.08895] [INSPIRE].
  96. [96]
    CMS collaboration, Observation of ttH production, Phys. Rev. Lett. 120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].
  97. [97]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect Probes of the MSSM after the Higgs Discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    M. Carena, J. Osborne, N.R. Shah and C.E.M. Wagner, Supersymmetry and LHC Missing Energy Signals, arXiv:1809.11082 [INSPIRE].
  99. [99]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  101. [101]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  102. [102]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  103. [103]
    ATLAS collaboration, Search for new phenomena in the Z(→ ℓℓ) + E Tmiss final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector,ATLAS-CONF-2016-056 (2016).

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.The Oskar Klein Centre for Cosmoparticle Physics, Department of PhysicsStockholm UniversityStockholmSweden
  2. 2.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  3. 3.Department of Physics & AstronomyWayne State UniversityDetroitU.S.A.

Personalised recommendations