Advertisement

Journal of High Energy Physics

, 2018:41 | Cite as

Solving the muon g-2 anomaly in CMSSM extension with non-universal gaugino masses

  • Fei Wang
  • Kun Wang
  • Jin Min Yang
  • Jingya Zhu
Open Access
Regular Article - Theoretical Physics

Abstract

We propose to generate non-universal gaugino masses in SU(5) Grand Unified Theory (GUT) with the generalized Planck-scale mediation SUSY breaking mechanism, in which the non-universality arises from proper wavefunction normalization with lowest component VEVs of various high dimensional representations of the Higgs fields of SU(5) and an unique F-term VEV by the singlet. Different predictions on gaugino mass ratios with respect to widely studied scenarios are given. The gluino-SUGRA-like scenario, where gluinos are much heavier than winos, bino and universal scalar masses, can be easily realized with appropriate combinations of such high-representation Higgs fields. With six GUT-scale free parameters in our scenario, we can solve elegantly the tension between mSUGRA and the present experimental results, including the muon g-2, the dark matter (DM) relic density and the direct sparticle search bounds from the LHC. Taking into account the current constraints in our numerical scan, we have the following observations: (i) The large-tan β (≳35) samples with a moderate M3 (∼5 TeV), a small |A0/M3| (≲0.4) and a small mA (≲4 TeV) are favoured to generate a 125 GeV SM-like Higgs and predict a large muon g-2, while the stop mass and μ parameter, mainly determined by |M3| (≫ M0, |M1|, |M2|), can be about 6 TeV; (ii) The moderate-tan β (35 ∼ 40) samples with a negative M3 can have a light smuon (250 ∼ 450 GeV) but a heavy stau (≳1 TeV), which predict a large muon g-2 but a small Br(Bsμ+μ); (iii) To obtain the right DM relic density, the annihilation mechanisms should be stau exchange, stau coannihilation, chargino coannihilation, slepton annihilation and the combination of two or three of them; (iv) To obtain the right DM relic density, the spin-independent DM-nucleon cross section is typically much smaller than the present limits of XENON1T 2018 and also an order of magnitude lower than the future detection sensitivity of LZ and XENONnT experiments.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    Muon g − 2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  4. [4]
    J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].
  5. [5]
    J. Ellis and K.A. Olive, Revisiting the Higgs Mass and Dark Matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].
  6. [6]
    C. Han, K.-i. Hikasa, L. Wu, J.M. Yang and Y. Zhang, Status of CMSSM in light of current LHC Run-2 and LUX data, Phys. Lett. B 769 (2017) 470 [arXiv:1612.02296] [INSPIRE].
  7. [7]
    P. Bechtle et al., Killing the CMSSM softly, Eur. Phys. J. C 76 (2016) 96 [arXiv:1508.05951] [INSPIRE].
  8. [8]
    E.A. Bagnaschi et al., Supersymmetric Dark Matter after LHC Run 1, Eur. Phys. J. C 75 (2015) 500 [arXiv:1508.01173] [INSPIRE].
  9. [9]
    GAMBIT collaboration, P. Athron et al., Global fits of GUT-scale SUSY models with GAMBIT, Eur. Phys. J. C 77 (2017) 824 [arXiv:1705.07935] [INSPIRE].
  10. [10]
    M. Kubo, J. Sato, T. Shimomura, Y. Takanishi and M. Yamanaka, Big-bang nucleosynthesis and leptogenesis in the CMSSM, Phys. Rev. D 97 (2018) 115013 [arXiv:1803.07686] [INSPIRE].
  11. [11]
    S. Banerjee, G. Bélanger, B. Mukhopadhyaya and P.D. Serpico, Signatures of sneutrino dark matter in an extension of the CMSSM, JHEP 07 (2016) 095 [arXiv:1603.08834] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    I. Gogoladze, B. He, A. Mustafayev, S. Raza and Q. Shafi, Effects of Neutrino Inverse Seesaw Mechanism on the Sparticle Spectrum in CMSSM and NUHM2, JHEP 05 (2014) 078 [arXiv:1401.8251] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.F. Gunion, Y. Jiang and S. Kraml, The Constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].
  14. [14]
    U. Ellwanger and C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale, Adv. High Energy Phys. 2012 (2012) 625389 [arXiv:1203.5048] [INSPIRE].CrossRefzbMATHGoogle Scholar
  15. [15]
    K. Kowalska, S. Munir, L. Roszkowski, E.M. Sessolo, S. Trojanowski and Y.-L.S. Tsai, Constrained next-to-minimal supersymmetric standard model with a 126 GeV Higgs boson: A global analysis, Phys. Rev. D 87 (2013) 115010 [arXiv:1211.1693] [INSPIRE].
  16. [16]
    C. Beskidt, W. de Boer and D.I. Kazakov, A comparison of the Higgs sectors of the CMSSM and NMSSM for a 126 GeV Higgs boson, Phys. Lett. B 726 (2013) 758 [arXiv:1308.1333] [INSPIRE].
  17. [17]
    D. Kim, P. Athron, C. Balázs, B. Farmer and E. Hutchison, Bayesian naturalness of the CMSSM and CNMSSM, Phys. Rev. D 90 (2014) 055008 [arXiv:1312.4150] [INSPIRE].
  18. [18]
    A. Fowlie, Is the CNMSSM more credible than the CMSSM?, Eur. Phys. J. C 74 (2014) 3105 [arXiv:1407.7534] [INSPIRE].
  19. [19]
    A. Choudhury, S. Rao and L. Roszkowski, Impact of LHC data on muon g − 2 solutions in a vectorlike extension of the constrained MSSM, Phys. Rev. D 96 (2017) 075046 [arXiv:1708.05675] [INSPIRE].
  20. [20]
    A. Choudhury, L. Darmé, L. Roszkowski, E.M. Sessolo and S. Trojanowski, Muon g − 2 and related phenomenology in constrained vector-like extensions of the MSSM, JHEP 05 (2017) 072 [arXiv:1701.08778] [INSPIRE].
  21. [21]
    L. Roszkowski, E.M. Sessolo and A.J. Williams, What next for the CMSSM and the NUHM: Improved prospects for superpartner and dark matter detection, JHEP 08 (2014) 067 [arXiv:1405.4289] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    O. Buchmueller et al., The CMSSM and NUHM1 after LHC Run 1, Eur. Phys. J. C 74 (2014) 2922 [arXiv:1312.5250] [INSPIRE].
  23. [23]
    C. Strege, G. Bertone, F. Feroz, M. Fornasa, R. Ruiz de Austri and R. Trotta, Global Fits of the CMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints, JCAP 04 (2013) 013 [arXiv:1212.2636] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    O. Buchmueller et al., The CMSSM and NUHM1 in Light of 7 TeV LHC, B sμ + μ and XENON100 Data, Eur. Phys. J. C 72 (2012) 2243 [arXiv:1207.7315] [INSPIRE].
  25. [25]
    J. Chakrabortty, S. Mohanty and S. Rao, Non-universal gaugino mass GUT models in the light of dark matter and LHC constraints, JHEP 02 (2014) 074 [arXiv:1310.3620] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M.A. Ajaib, SU(5) with nonuniversal gaugino masses, Int. J. Mod. Phys. A 33 (2018) 1850032 [arXiv:1711.02560] [INSPIRE].
  27. [27]
    J. Chakrabortty, A. Choudhury and S. Mondal, Non-universal Gaugino mass models under the lamppost of muon (g − 2), JHEP 07 (2015) 038 [arXiv:1503.08703] [INSPIRE].
  28. [28]
    S.P. Martin, Compressed supersymmetry and natural neutralino dark matter from top squark-mediated annihilation to top quarks, Phys. Rev. D 75 (2007) 115005 [hep-ph/0703097] [INSPIRE].
  29. [29]
    J. Ellis, J.L. Evans, F. Luo, K.A. Olive and J. Zheng, Stop Coannihilation in the CMSSM and SubGUT Models, Eur. Phys. J. C 78 (2018) 425 [arXiv:1801.09855] [INSPIRE].
  30. [30]
    J. Ellis, F. Luo, K.A. Olive and P. Sandick, The Higgs Mass beyond the CMSSM, Eur. Phys. J. C 73 (2013) 2403 [arXiv:1212.4476] [INSPIRE].
  31. [31]
    J. Ellis, J.L. Evans, A. Mustafayev, N. Nagata and K.A. Olive, The Super-GUT CMSSM Revisited, Eur. Phys. J. C 76 (2016) 592 [arXiv:1608.05370] [INSPIRE].
  32. [32]
    F. Wang, Analytical Soft SUSY Spectrum in Mirage-Type Mediation Scenarios, JHEP 11 (2018) 062 [arXiv:1808.08529] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    L. Aparicio et al., Non-thermal CMSSM with a 125 GeV Higgs, JHEP 05 (2015) 098 [arXiv:1502.05672] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.R. Ellis, C. Kounnas and D.V. Nanopoulos, No Scale Supersymmetric Guts, Nucl. Phys. B 247 (1984) 373 [INSPIRE].
  35. [35]
    M. Drees, Phenomenological Consequences of N = 1 Supergravity Theories With Nonminimal Kinetic Energy Terms for Vector Superfields, Phys. Lett. B 158 (1985) 409 [INSPIRE].
  36. [36]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and K. Tamvakis, Gaugino Masses and Grand Unification, Phys. Lett. B 155 (1985) 381 [INSPIRE].
  37. [37]
    M. Drees, N = 1 Supergravity GUTs With Noncanonical Kinetic Energy Terms, Phys. Rev. D 33 (1986) 1468 [INSPIRE].
  38. [38]
    B.L. Kaufman, B.D. Nelson and M.K. Gaillard, Mirage models confront the LHC: Kähler-stabilized heterotic string theory, Phys. Rev. D 88 (2013) 025003 [arXiv:1303.6575] [INSPIRE].
  39. [39]
    H. Abe, T. Higaki and T. Kobayashi, KKLT type models with moduli-mixing superpotential, Phys. Rev. D 73 (2006) 046005 [hep-th/0511160] [INSPIRE].
  40. [40]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    K. Sumita, Nonuniversal gaugino masses in a magnetized toroidal compactification of SYM theories, JHEP 10 (2015) 156 [arXiv:1507.04408] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.E. Younkin and S.P. Martin, Non-universal gaugino masses, the supersymmetric little hierarchy problem and dark matter, Phys. Rev. D 85 (2012) 055028 [arXiv:1201.2989] [INSPIRE].
  43. [43]
    S. Akula and P. Nath, Gluino-driven radiative breaking, Higgs boson mass, muon g − 2 and the Higgs diphoton decay in supergravity unification, Phys. Rev. D 87 (2013) 115022 [arXiv:1304.5526] [INSPIRE].
  44. [44]
    G. Anderson, H. Baer, C.-h. Chen and X. Tata, The Reach of Fermilab Tevatron upgrades for SU(5) supergravity models with nonuniversal gaugino masses, Phys. Rev. D 61 (2000) 095005 [hep-ph/9903370] [INSPIRE].
  45. [45]
    N. Chamoun, C.-S. Huang, C. Liu and X.-H. Wu, Nonuniversal gaugino masses in supersymmetric SO(10), Nucl. Phys. B 624 (2002) 81 [hep-ph/0110332] [INSPIRE].
  46. [46]
    J. Chakrabortty and A. Raychaudhuri, A Note on dimension-5 operators in GUTs and their impact, Phys. Lett. B 673 (2009) 57 [arXiv:0812.2783] [INSPIRE].
  47. [47]
    S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].
  48. [48]
    S. Bhattacharya and J. Chakrabortty, Gaugino mass non-universality in an SO(10) supersymmetric Grand Unified Theory: Low-energy spectra and collider signals, Phys. Rev. D 81 (2010) 015007 [arXiv:0903.4196] [INSPIRE].
  49. [49]
    D. Feldman, Z. Liu and P. Nath, Gluino NLSP, Dark Matter via Gluino Coannihilation and LHC Signatures, Phys. Rev. D 80 (2009) 015007 [arXiv:0905.1148] [INSPIRE].
  50. [50]
    N. Chamoun, C.-S. Huang, C. Liu and X.-H. Wu, Intermediate Scale Dependence of Non-Universal Gaugino Masses in Supersymmetric SO(10), J. Phys. G 37 (2010) 105016 [arXiv:0909.2374] [INSPIRE].
  51. [51]
    S.P. Martin, Nonuniversal gaugino masses and seminatural supersymmetry in view of the Higgs boson discovery, Phys. Rev. D 89 (2014) 035011 [arXiv:1312.0582] [INSPIRE].
  52. [52]
    J. Kawamura and Y. Omura, Constraints on nonuniversal gaugino mass scenario using the latest LHC data, Phys. Rev. D 93 (2016) 055019 [arXiv:1601.03484] [INSPIRE].
  53. [53]
    S. Mohanty, S. Rao and D.P. Roy, Reconciling the muon g − 2 and dark matter relic density with the LHC results in nonuniversal gaugino mass models, JHEP 09 (2013) 027 [arXiv:1303.5830] [INSPIRE].
  54. [54]
    K. Kowalska, L. Roszkowski, E.M. Sessolo and A.J. Williams, GUT-inspired SUSY and the muon g − 2 anomaly: prospects for LHC 14 TeV, JHEP 06 (2015) 020 [arXiv:1503.08219] [INSPIRE].
  55. [55]
    A.S. Belyaev, S.F. King and P.B. Schaefers, Muon g − 2 and dark matter suggest nonuniversal gaugino masses: SU(5) × A 4 case study at the LHC, Phys. Rev. D 97 (2018) 115002 [arXiv:1801.00514] [INSPIRE].
  56. [56]
    J. Kawamura and Y. Omura, Study of dark matter physics in non-universal gaugino mass scenario, JHEP 08 (2017) 072 [arXiv:1703.10379] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Chakraborti, U. Chattopadhyay, S. Rao and D.P. Roy, Higgsino Dark Matter in Nonuniversal Gaugino Mass Models, Phys. Rev. D 91 (2015) 035022 [arXiv:1411.4517] [INSPIRE].
  58. [58]
    U. Chattopadhyay, D. Das and D.P. Roy, Mixed Neutralino Dark Matter in Nonuniversal Gaugino Mass Models, Phys. Rev. D 79 (2009) 095013 [arXiv:0902.4568] [INSPIRE].
  59. [59]
    D.G. Cerdeno and C. Muñoz, Neutralino dark matter in supergravity theories with non-universal scalar and gaugino masses, JHEP 10 (2004) 015 [hep-ph/0405057] [INSPIRE].
  60. [60]
    U. Chattopadhyay and D.P. Roy, Higgsino dark matter in a SUGRA model with nonuniversal gaugino masses, Phys. Rev. D 68 (2003) 033010 [hep-ph/0304108] [INSPIRE].
  61. [61]
    A. Corsetti and P. Nath, Gaugino mass nonuniversality and dark matter in SUGRA, strings and D-brane models, Phys. Rev. D 64 (2001) 125010 [hep-ph/0003186] [INSPIRE].
  62. [62]
    S.F. King, J.P. Roberts and D.P. Roy, Natural dark matter in SUSY GUTs with non-universal gaugino masses, JHEP 10 (2007) 106 [arXiv:0705.4219] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C. Balázs, T. Li, D.V. Nanopoulos and F. Wang, Supersymmetry Breaking Scalar Masses and Trilinear Soft Terms in Generalized Minimal Supergravity, JHEP 09 (2010) 003 [arXiv:1006.5559] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    C. Balázs, T. Li, D.V. Nanopoulos and F. Wang, Realistic Standard Model Fermion Mass Relations in Generalized Minimal Supergravity (GmSUGRA), JHEP 02 (2011) 096 [arXiv:1101.5423] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    T. Li and D.V. Nanopoulos, Generalizing Minimal Supergravity, Phys. Lett. B 692 (2010) 121 [arXiv:1002.4183] [INSPIRE].
  66. [66]
    F. Wang, Supersymmetry Breaking Scalar Masses and Trilinear Soft Terms From High-Dimensional Operators in E 6 SUSY GUT, Nucl. Phys. B 851 (2011) 104 [arXiv:1103.0069] [INSPIRE].
  67. [67]
    T. Li and S. Raza, Electroweak supersymmetry from the generalized minimal supergravity model in the MSSM, Phys. Rev. D 91 (2015) 055016 [arXiv:1409.3930] [INSPIRE].
  68. [68]
    T. Cheng, J. Li, T. Li, D.V. Nanopoulos and C. Tong, Electroweak Supersymmetry around the Electroweak Scale, Eur. Phys. J. C 73 (2013) 2322 [arXiv:1202.6088] [INSPIRE].
  69. [69]
    F. Wang, W. Wang and J.M. Yang, A split SUSY model from SUSY GUT, JHEP 03 (2015) 050 [arXiv:1501.02906] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    F. Wang and Y.-X. Li, Generalized Froggatt-Nielsen Mechanism, Eur. Phys. J. C 71 (2011) 1803 [arXiv:1103.6017] [INSPIRE].
  71. [71]
    F. Wang, W. Wang and J.M. Yang, Reconcile muon g − 2 anomaly with LHC data in SUGRA with generalized gravity mediation, JHEP 06 (2015) 079 [arXiv:1504.00505] [INSPIRE].
  72. [72]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].
  73. [73]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].
  74. [74]
    U. Ellwanger and C. Hugonie, NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun. 177 (2007) 399 [hep-ph/0612134] [INSPIRE].
  75. [75]
    P.H. Chankowski, S. Pokorski and J. Rosiek, Complete on-shell renormalization scheme for the minimal supersymmetric Higgs sector, Nucl. Phys. B 423 (1994) 437 [hep-ph/9303309] [INSPIRE].
  76. [76]
    A. Dabelstein, The One loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses, Z. Phys. C 67 (1995) 495 [hep-ph/9409375] [INSPIRE].
  77. [77]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
  78. [78]
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].
  79. [79]
    S. Paßehr and G. Weiglein, Two-loop top and bottom Yukawa corrections to the Higgs-boson masses in the complex MSSM, Eur. Phys. J. C 78 (2018) 222 [arXiv:1705.07909] [INSPIRE].
  80. [80]
    W. Hollik and S. Paßehr, Higgs boson masses and mixings in the complex MSSM with two-loop top-Yukawa-coupling corrections, JHEP 10 (2014) 171 [arXiv:1409.1687] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  81. [81]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs sector of the complex MSSM at two-loop order: QCD contributions, Phys. Lett. B 652 (2007) 300 [arXiv:0705.0746] [INSPIRE].
  82. [82]
    S.P. Martin, Two-loop scalar self-energies and pole masses in a general renormalizable theory with massless gauge bosons, Phys. Rev. D 71 (2005) 116004 [hep-ph/0502168] [INSPIRE].
  83. [83]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at O(α b α s), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [INSPIRE].
  84. [84]
    S.P. Martin, Strong and Yukawa two-loop contributions to Higgs scalar boson self-energies and pole masses in supersymmetry, Phys. Rev. D 71 (2005) 016012 [hep-ph/0405022] [INSPIRE].
  85. [85]
    S.P. Martin, Two loop scalar self energies in a general renormalizable theory at leading order in gauge couplings, Phys. Rev. D 70 (2004) 016005 [hep-ph/0312092] [INSPIRE].
  86. [86]
    A. Dedes, G. Degrassi and P. Slavich, On the two loop Yukawa corrections to the MSSM Higgs boson masses at large tan beta, Nucl. Phys. B 672 (2003) 144 [hep-ph/0305127] [INSPIRE].
  87. [87]
    S.P. Martin, Complete two loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 67 (2003) 095012 [hep-ph/0211366] [INSPIRE].
  88. [88]
    S.P. Martin, Two Loop Effective Potential for the Minimal Supersymmetric Standard Model, Phys. Rev. D 66 (2002) 096001 [hep-ph/0206136] [INSPIRE].
  89. [89]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].
  90. [90]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the O(α t2) two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].
  91. [91]
    S.P. Martin, Two loop effective potential for a general renormalizable theory and softly broken supersymmetry, Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [INSPIRE].
  92. [92]
    G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].
  93. [93]
    J.R. Espinosa and R.-J. Zhang, Complete two loop dominant corrections to the mass of the lightest CP even Higgs boson in the minimal supersymmetric standard model, Nucl. Phys. B 586 (2000) 3 [hep-ph/0003246] [INSPIRE].
  94. [94]
    J.R. Espinosa and R.-J. Zhang, MSSM lightest CP even Higgs boson mass to O(α s alpha(t)): The Effective potential approach, JHEP 03 (2000) 026 [hep-ph/9912236] [INSPIRE].
  95. [95]
    S. Heinemeyer, W. Hollik and G. Weiglein, The Mass of the lightest MSSM Higgs boson: A Compact analytical expression at the two loop level, Phys. Lett. B 455 (1999) 179 [hep-ph/9903404] [INSPIRE].
  96. [96]
    S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP-even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].
  97. [97]
    R.-J. Zhang, Two loop effective potential calculation of the lightest CP even Higgs boson mass in the MSSM, Phys. Lett. B 447 (1999) 89 [hep-ph/9808299] [INSPIRE].
  98. [98]
    S. Heinemeyer, W. Hollik and G. Weiglein, Precise prediction for the mass of the lightest Higgs boson in the MSSM, Phys. Lett. B 440 (1998) 296 [hep-ph/9807423] [INSPIRE].
  99. [99]
    S. Heinemeyer, W. Hollik and G. Weiglein, QCD corrections to the masses of the neutral CP-even Higgs bosons in the MSSM, Phys. Rev. D 58 (1998) 091701 [hep-ph/9803277] [INSPIRE].
  100. [100]
    M. Carena, M. Quirós and C.E.M. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].
  101. [101]
    J.A. Casas, J.R. Espinosa, M. Quirós and A. Riotto, The Lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466] [hep-ph/9407389] [INSPIRE].
  102. [102]
    R. Hempfling and A.H. Hoang, Two loop radiative corrections to the upper limit of the lightest Higgs boson mass in the minimal supersymmetric model, Phys. Lett. B 331 (1994) 99 [hep-ph/9401219] [INSPIRE].
  103. [103]
    P. Kant, R.V. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  104. [104]
    R.V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [arXiv:0803.0672] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    S.P. Martin, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 75 (2007) 055005 [hep-ph/0701051] [INSPIRE].
  106. [106]
    E. Bagnaschi, J. Pardo Vega and P. Slavich, Improved determination of the Higgs mass in the MSSM with heavy superpartners, Eur. Phys. J. C 77 (2017) 334 [arXiv:1703.08166] [INSPIRE].
  107. [107]
    G. Lee and C.E.M. Wagner, Higgs bosons in heavy supersymmetry with an intermediate m A, Phys. Rev. D 92 (2015) 075032 [arXiv:1508.00576] [INSPIRE].
  108. [108]
    J. Pardo Vega and G. Villadoro, SusyHD: Higgs mass Determination in Supersymmetry, JHEP 07 (2015) 159 [arXiv:1504.05200] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs Mass and Unnatural Supersymmetry, JHEP 09 (2014) 092 [arXiv:1407.4081] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    P. Draper, G. Lee and C.E.M. Wagner, Precise estimates of the Higgs mass in heavy supersymmetry, Phys. Rev. D 89 (2014) 055023 [arXiv:1312.5743] [INSPIRE].
  111. [111]
    G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].
  112. [112]
    R.V. Harlander, J. Klappert, A.D. Ochoa Franco and A. Voigt, The light CP-even MSSM Higgs mass resummed to fourth logarithmic order, Eur. Phys. J. C 78 (2018) 874 [arXiv:1807.03509] [INSPIRE].
  113. [113]
    H. Bahl and W. Hollik, Precise prediction of the MSSM Higgs boson masses for low M A, JHEP 07 (2018) 182 [arXiv:1805.00867] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    P. Athron et al., FlexibleSUSY 2.0: Extensions to investigate the phenomenology of SUSY and non-SUSY models, Comput. Phys. Commun. 230 (2018) 145 [arXiv:1710.03760] [INSPIRE].
  115. [115]
    H. Bahl, S. Heinemeyer, W. Hollik and G. Weiglein, Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass, Eur. Phys. J. C 78 (2018) 57 [arXiv:1706.00346] [INSPIRE].
  116. [116]
    F. Staub and W. Porod, Improved predictions for intermediate and heavy Supersymmetry in the MSSM and beyond, Eur. Phys. J. C 77 (2017) 338 [arXiv:1703.03267] [INSPIRE].
  117. [117]
    P. Athron, J.-h. Park, T. Steudtner, D. Stöckinger and A. Voigt, Precise Higgs mass calculations in (non-)minimal supersymmetry at both high and low scales, JHEP 01 (2017) 079 [arXiv:1609.00371] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    H. Bahl and W. Hollik, Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations, Eur. Phys. J. C 76 (2016) 499 [arXiv:1608.01880] [INSPIRE].
  119. [119]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-Precision Predictions for the Light CP -Even Higgs Boson Mass of the Minimal Supersymmetric Standard Model, Phys. Rev. Lett. 112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].
  121. [121]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs: A program for the calculation of MSSM Higgs-boson observablesVersion 2.6.5, Comput. Phys. Commun. 180 (2009) 1426 [INSPIRE].
  122. [122]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].
  123. [123]
    ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, ATLAS-CONF-2015-007.
  124. [124]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  125. [125]
    J. Cao, Y. He, P. Wu, M. Zhang and J. Zhu, Higgs Phenomenology in the Minimal Dilaton Model after Run I of the LHC, JHEP 01 (2014) 150 [arXiv:1311.6661] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    J. Cao, F. Ding, C. Han, J.M. Yang and J. Zhu, A light Higgs scalar in the NMSSM confronted with the latest LHC Higgs data, JHEP 11 (2013) 018 [arXiv:1309.4939] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    P. Bechtle et al., HiggsBounds-4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].
  128. [128]
    ATLAS collaboration, Search for the direct production of charginos and neutralinos in final states with tau leptons in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 78 (2018) 154 [arXiv:1708.07875] [INSPIRE].
  129. [129]
    BaBar collaboration, J.P. Lees et al., Precision Measurement of the BX s γ Photon Energy Spectrum, Branching Fraction and Direct CP Asymmetry A CP (BX s+d γ), Phys. Rev. Lett. 109 (2012) 191801 [arXiv:1207.2690] [INSPIRE].
  130. [130]
    BaBar collaboration, J.P. Lees et al., Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  131. [131]
    LHCb collaboration, First Evidence for the Decay B s0 → μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].
  132. [132]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  133. [133]
    F. Jegerlehner, Essentials of the Muon g − 2, Acta Phys. Polon. B 38 (2007) 3021 [hep-ph/0703125] [INSPIRE].
  134. [134]
    J. Bijnens and J. Prades, The Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment: Where do we stand?, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170] [INSPIRE].
  135. [135]
    S. Heinemeyer, D. Stöckinger and G. Weiglein, Electroweak and supersymmetric two-loop corrections to (g − 2)μ, Nucl. Phys. B 699 (2004) 103 [hep-ph/0405255] [INSPIRE].
  136. [136]
    A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
  137. [137]
    D. Stöckinger, The Muon Magnetic Moment and Supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [INSPIRE].
  138. [138]
    A. Arhrib and S. Baek, Two loop Barr-Zee type contributions to (g − 2)μ in the MSSM, Phys. Rev. D 65 (2002) 075002 [hep-ph/0104225] [INSPIRE].
  139. [139]
    K.-m. Cheung, C.-H. Chou and O.C.W. Kong, Muon anomalous magnetic moment, two Higgs doublet model and supersymmetry, Phys. Rev. D 64 (2001) 111301 [hep-ph/0103183] [INSPIRE].
  140. [140]
    E. Bagnaschi et al., Likelihood Analysis of the pMSSM11 in Light of LHC 13-TeV Data, Eur. Phys. J. C 78 (2018) 256 [arXiv:1710.11091] [INSPIRE].
  141. [141]
    P. Athron et al., GM2Calc: Precise MSSM prediction for (g − 2) of the muon, Eur. Phys. J. C 76 (2016) 62 [arXiv:1510.08071] [INSPIRE].
  142. [142]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  143. [143]
    WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
  144. [144]
    XENON collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  145. [145]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A Tool for dark matter studies, Nuovo Cim. C 033N2 (2010) 111 [arXiv:1005.4133] [INSPIRE].
  146. [146]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].
  147. [147]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].
  148. [148]
    J. Cao, X. Guo, Y. He, P. Wu and Y. Zhang, Diphoton signal of the light Higgs boson in natural NMSSM, Phys. Rev. D 95 (2017) 116001 [arXiv:1612.08522] [INSPIRE].
  149. [149]
    K.J. de Vries et al., The pMSSM10 after LHC Run 1, Eur. Phys. J. C 75 (2015) 422 [arXiv:1504.03260] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for Theoretical Physics, School of Physics and TechnologyWuhan UniversityWuhanP.R. China
  2. 2.School of PhysicsZhengzhou UniversityZhengZhouP.R. China
  3. 3.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China
  4. 4.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingP.R. China
  5. 5.Department of PhysicsTohoku UniversitySendaiJapan
  6. 6.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.

Personalised recommendations