Advertisement

Journal of High Energy Physics

, 2018:31 | Cite as

Computing N -subjettiness for boosted jets

  • Davide Napoletano
  • Gregory SoyezEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Jet substructure tools have proven useful in a number of high-energy particle-physics studies. A particular case is the discrimination, or tagging, between a boosted jet originated from an electroweak boson (signal), and a standard QCD parton (background). A common way to achieve this is to cut on a measure of the radiation inside the jet, i.e. a jet shape. Over the last few years, analytic calculations of jet substructure have allowed for a deeper understanding of these tools and for the development of more efficient ones. However, analytic calculations are often limited to the region where the jet shape is small. In this paper we introduce a new approach in perturbative QCD to compute jet shapes for a generic boosted jets, waiving the above limitation. We focus on an example common in the substructure literature: the jet mass distribution after a cut on the N -subjettiness τ21 ratio, extending previous works to the region relevant for phenomenology. We compare our analytic predictions to Monte Carlo simulations for both plain and SoftDrop-groomed jets. We use our results to construct analytically a decorrelated tagger.

Keywords

Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning, arXiv:1709.04464 [INSPIRE].
  2. [2]
    L. Asquith et al., Jet substructure at the Large Hadron Collider: experimental review, arXiv:1803.06991 [INSPIRE].
  3. [3]
    CMS collaboration, Search for vector-like T and B quark pairs in final states with leptons at \( \sqrt{s}=13 \) TeV, JHEP 08 (2018) 177 [arXiv:1805.04758] [INSPIRE].
  4. [4]
    CMS collaboration, Search for a heavy resonance decaying into a Z boson and a Z or W boson in 22q final states at \( \sqrt{s}=13 \) TeV, JHEP 09 (2018) 101 [arXiv:1803.10093] [INSPIRE].
  5. [5]
    CMS collaboration, Search for a heavy resonance decaying into a vector boson and a Higgs boson in semileptonic final states at \( \sqrt{s}=13 \) TeV, CMS-PAS-B2G-17-004, CERN, Geneva, Switzerland, (2017).
  6. [6]
    ATLAS collaboration, Search for W tb decays in the hadronic final state using pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 781 (2018) 327 [arXiv:1801.07893] [INSPIRE].
  7. [7]
    ATLAS collaboration, Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 788 (2019) 316 [arXiv:1801.08769] [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 565 [arXiv:1804.10823] [INSPIRE].
  9. [9]
    CMS collaboration, Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair, Phys. Rev. Lett. 120 (2018) 071802 [arXiv:1709.05543] [INSPIRE].
  10. [10]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].
  12. [12]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
  14. [14]
    A.J. Larkoski, I. Moult and D. Neill, Analytic boosted boson discrimination, JHEP 05 (2016) 117 [arXiv:1507.03018] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Dasgupta, L. Schunk and G. Soyez, Jet shapes for boosted jet two-prong decays from first-principles, JHEP 04 (2016) 166 [arXiv:1512.00516] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Dasgupta, A. Powling, L. Schunk and G. Soyez, Improved jet substructure methods: Y-splitter and variants with grooming, JHEP 12 (2016) 079 [arXiv:1609.07149] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A.J. Larkoski, I. Moult and D. Neill, Factorization and resummation for groomed multi-prong jet shapes, JHEP 02 (2018) 144 [arXiv:1710.00014] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    I. Moult, B. Nachman and D. Neill, Convolved substructure: analytically decorrelating jet substructure observables, JHEP 05 (2018) 002 [arXiv:1710.06859] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Dasgupta, M. Guzzi, J. Rawling and G. Soyez, Top tagging: an analytical perspective, JHEP 09 (2018) 170 [arXiv:1807.04767] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    CMS collaboration, Measurement of the splitting function in pp and Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Rev. Lett. 120 (2018) 142302 [arXiv:1708.09429] [INSPIRE].
  21. [21]
    ALICE collaboration, D. Caffarri, Exploring jet substructure with jet shapes in ALICE, Nucl. Phys. A 967 (2017) 528 [arXiv:1704.05230] [INSPIRE].
  22. [22]
    Y.-T. Chien and R. Kunnawalkam Elayavalli, Probing heavy ion collisions using quark and gluon jet substructure, arXiv:1803.03589 [INSPIRE].
  23. [23]
    ALICE collaboration, H. Andrews, Exploring phase space of jet splittings at alice using grooming and recursive techniques, talk at Quark Matter 2018, Venice, Italy, (2018).
  24. [24]
    M. Connors, C. Nattrass, R. Reed and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90 (2018) 025005 [arXiv:1705.01974] [INSPIRE].
  25. [25]
    J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-images: computer vision inspired techniques for jet tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning top taggers or the end of QCD?, JHEP 05 (2017) 006 [arXiv:1701.08784] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-aware recursive neural networks for jet physics, arXiv:1702.00748 [INSPIRE].
  30. [30]
    S. Egan, W. Fedorko, A. Lister, J. Pearkes and C. Gay, Long Short-Term Memory (LSTM) networks with jet constituents for boosted top tagging at the LHC, arXiv:1711.09059 [INSPIRE].
  31. [31]
    A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a framework for unsupervised machine learning in particle physics, arXiv:1804.09720 [INSPIRE].
  32. [32]
    K. Datta and A. Larkoski, How much information is in a jet?, JHEP 06 (2017) 073 [arXiv:1704.08249] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K. Datta and A.J. Larkoski, Novel jet observables from machine learning, JHEP 03 (2018) 086 [arXiv:1710.01305] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow polynomials: a complete linear basis for jet substructure, JHEP 04 (2018) 013 [arXiv:1712.07124] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    F.A. Dreyer, G.P. Salam and G. Soyez, The Lund jet plane, arXiv:1807.04758 [INSPIRE].
  36. [36]
    CMS collaboration, Measurement of the differential jet production cross section with respect to jet mass and transverse momentum in dijet events from pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-SMP-16-010, CERN, Geneva, Switzerland, (2016).
  37. [37]
    ATLAS collaboration, Measurement of the soft-drop jet mass in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 092001 [arXiv:1711.08341] [INSPIRE].
  38. [38]
    S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after soft drop, Eur. Phys. J. C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].
  40. [40]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N -subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.-H. Kim, Rest frame subjet algorithm with SISCone jet for fully hadronic decaying Higgs search, Phys. Rev. D 83 (2011) 011502 [arXiv:1011.1493] [INSPIRE].
  43. [43]
    J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N -subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.J. Larkoski, I. Moult and D. Neill, Power counting to better jet observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G.P. Salam, L. Schunk and G. Soyez, Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging, JHEP 03 (2017) 022 [arXiv:1612.03917] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Dolen, P. Harris, S. Marzani, S. Rappoccio and N. Tran, Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure, JHEP 05 (2016) 156 [arXiv:1603.00027] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J.R. Andersen et al., Les Houches 2017: physics at TeV colliders Standard Model working group report, in Les Houches 2017: physics at TeV colliders new physics working group report, FERMILAB-CONF-18-122-CD-T, (2018) [arXiv:1803.07977] [INSPIRE].
  48. [48]
    Fastjet contrib webpage, https://fastjet.hepforge.org/contrib/.
  49. [49]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].
  50. [50]
    A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A.J. Larkoski and I. Moult, The singular behavior of jet substructure observables, Phys. Rev. D 93 (2016) 014017 [arXiv:1510.08459] [INSPIRE].
  52. [52]
    A.J. Larkoski and J. Thaler, Unsafe but calculable: ratios of angularities in perturbative QCD, JHEP 09 (2013) 137 [arXiv:1307.1699] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A.J. Larkoski, S. Marzani and J. Thaler, Sudakov safety in perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].
  54. [54]
    S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  55. [55]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  56. [56]
    J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].
  57. [57]
    S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143 [hep-ph/9810389] [INSPIRE].
  58. [58]
    S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [INSPIRE].
  59. [59]
    S. Catani and B.R. Webber, Infrared safe but infinite: soft gluon divergences inside the physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [INSPIRE].
  60. [60]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  61. [61]
    P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
  62. [62]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  63. [63]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
  64. [64]
    J. Bellm et al., HERWIG 7.1 release note, arXiv:1705.06919 [INSPIRE].
  65. [65]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
  67. [67]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  68. [68]
    S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.IPhT, CNRS, CEA Saclay, Université Paris-SaclayGif-sur-Yvette cedexFrance

Personalised recommendations