Advertisement

Journal of High Energy Physics

, 2018:24 | Cite as

Producing a new fermion in coherent elastic neutrino-nucleus scattering: from neutrino mass to dark matter

  • Vedran Brdar
  • Werner Rodejohann
  • Xun-Jie XuEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the production of a new MeV-scale fermion in coherent elastic neutrino-nucleus scattering. The effect on the measurable nucleon recoil spectrum is calculated. Assuming that the new fermion couples to neutrinos and quarks via a singlet scalar, we set limits on its mass and coupling using COHERENT data and also determine the sensitivity of the CONUS experiment. We investigate the possible connection of the new fermion to neutrino mass generation. The possibility of the new fermion being the dark matter particle is also studied.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    COHERENT collaboration, D. Akimov et al., Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
  2. [2]
    D.Z. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev. D 9 (1974) 1389 [INSPIRE].
  3. [3]
    C.J. Horowitz, K.J. Coakley and D.N. McKinsey, Supernova observation via neutrino-nucleus elastic scattering in the CLEAN detector, Phys. Rev. D 68 (2003) 023005 [astro-ph/0302071] [INSPIRE].
  4. [4]
    A. Drukier and L. Stodolsky, Principles and Applications of a Neutral Current Detector for Neutrino Physics and Astronomy, Phys. Rev. D 30 (1984) 2295 [INSPIRE].
  5. [5]
    A.J. Anderson et al., Measuring Active-to-Sterile Neutrino Oscillations with Neutral Current Coherent Neutrino-Nucleus Scattering, Phys. Rev. D 86 (2012) 013004 [arXiv:1201.3805] [INSPIRE].
  6. [6]
    B. Dutta, Y. Gao, R. Mahapatra, N. Mirabolfathi, L.E. Strigari and J.W. Walker, Sensitivity to oscillation with a sterile fourth generation neutrino from ultra-low threshold neutrino-nucleus coherent scattering, Phys. Rev. D 94 (2016) 093002 [arXiv:1511.02834] [INSPIRE].
  7. [7]
    T.S. Kosmas, D.K. Papoulias, M. Tortola and J.W.F. Valle, Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments, Phys. Rev. D 96 (2017) 063013 [arXiv:1703.00054] [INSPIRE].
  8. [8]
    B. Dutta, R. Mahapatra, L.E. Strigari and J.W. Walker, Sensitivity to Z-prime and nonstandard neutrino interactions from ultralow threshold neutrino-nucleus coherent scattering, Phys. Rev. D 93 (2016) 013015 [arXiv:1508.07981] [INSPIRE].
  9. [9]
    P.B. Denton, Y. Farzan and I.M. Shoemaker, Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data, JHEP 07 (2018) 037 [arXiv:1804.03660] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Lindner, W. Rodejohann and X.-J. Xu, Coherent Neutrino-Nucleus Scattering and new Neutrino Interactions, JHEP 03 (2017) 097 [arXiv:1612.04150] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT Enlightenment of the Neutrino Dark Side, Phys. Rev. D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE].
  12. [12]
    J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett. B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].
  13. [13]
    D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev. D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE].
  14. [14]
    Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent neutrino scattering, JHEP 05 (2018) 066 [arXiv:1802.05171] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Abdullah, J.B. Dent, B. Dutta, G.L. Kane, S. Liao and L.E. Strigari, Coherent elastic neutrino nucleus scattering as a probe of a Z through kinetic and mass mixing effects, Phys. Rev. D 98 (2018) 015005 [arXiv:1803.01224] [INSPIRE].
  16. [16]
    J. Billard, J. Johnston and B.J. Kavanagh, Prospects for exploring New Physics in Coherent Elastic Neutrino-Nucleus Scattering, JCAP 11 (2018) 016 [arXiv:1805.01798] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A.C. Dodd, E. Papageorgiu and S. Ranfone, The Effect of a neutrino magnetic moment on nuclear excitation processes, Phys. Lett. B 266 (1991) 434 [INSPIRE].
  18. [18]
    T.S. Kosmas, O.G. Miranda, D.K. Papoulias, M. Tórtola and J.W.F. Valle, Probing neutrino magnetic moments at the Spallation Neutron Source facility, Phys. Rev. D 92 (2015) 013011 [arXiv:1505.03202] [INSPIRE].
  19. [19]
    E. Akhmedov, G. Arcadi, M. Lindner and S. Vogl, Coherent scattering and macroscopic coherence: Implications for neutrino, dark matter and axion detection, JHEP 10 (2018) 045 [arXiv:1806.10962] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    W. Maneschg, The status of conus,  https://doi.org/10.5281/zenodo.1286927 (2018).
  21. [21]
    R. Strauss et al., The ν-cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering, Eur. Phys. J. C 77 (2017) 506 [arXiv:1704.04320] [INSPIRE].
  22. [22]
    CONNIE collaboration, A. Aguilar-Arevalo et al., The CONNIE experiment, J. Phys. Conf. Ser. 761 (2016) 012057 [arXiv:1608.01565] [INSPIRE].
  23. [23]
    MINER collaboration, G. Agnolet et al., Background Studies for the MINER Coherent Neutrino Scattering Reactor Experiment, Nucl. Instrum. Meth. A 853 (2017) 53 [arXiv:1609.02066] [INSPIRE].
  24. [24]
    H.T. Wong, Neutrino-nucleus coherent scattering and dark matter searches with sub-keV germanium detector, Nucl. Phys. A 844 (2010) 229C.Google Scholar
  25. [25]
    V. Belov et al., The ν GeN experiment at the Kalinin Nuclear Power Plant, 2015 JINST 10 P12011 [INSPIRE].
  26. [26]
    J. Billard et al., Coherent Neutrino Scattering with Low Temperature Bolometers at CHOOZ Reactor Complex, J. Phys. G 44 (2017) 105101 [arXiv:1612.09035] [INSPIRE].
  27. [27]
    E. Bertuzzo, C.J. Caniu Barros and G. Grilli di Cortona, MeV Dark Matter: Model Independent Bounds, JHEP 09 (2017) 116 [arXiv:1707.00725] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Y. Hochberg et al., Detection of sub-MeV Dark Matter with Three-Dimensional Dirac Materials, Phys. Rev. D 97 (2018) 015004 [arXiv:1708.08929] [INSPIRE].
  29. [29]
    M.J. Dolan, F. Kahlhoefer and C. McCabe, Directly detecting sub-GeV dark matter with electrons from nuclear scattering, Phys. Rev. Lett. 121 (2018) 101801 [arXiv:1711.09906] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Hufnagel, K. Schmidt-Hoberg and S. Wild, BBN constraints on MeV-scale dark sectors. Part I. Sterile decays, JCAP 02 (2018) 044 [arXiv:1712.03972] [INSPIRE].
  31. [31]
    M. Dutra, M. Lindner, S. Profumo, F.S. Queiroz, W. Rodejohann and C. Siqueira, MeV Dark Matter Complementarity and the Dark Photon Portal, JCAP 03 (2018) 037 [arXiv:1801.05447] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Berlin, D. Hooper, G. Krnjaic and S.D. McDermott, Severely Constraining Dark Matter Interpretations of the 21-cm Anomaly, Phys. Rev. Lett. 121 (2018) 011102 [arXiv:1803.02804] [INSPIRE].
  33. [33]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].
  34. [34]
    V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
  35. [35]
    P. Coloma, P.B. Denton, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Curtailing the Dark Side in Non-Standard Neutrino Interactions, JHEP 04 (2017) 116 [arXiv:1701.04828] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  37. [37]
    T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].
  38. [38]
    TEXONO collaboration, S. Kerman et al., Coherency in Neutrino-Nucleus Elastic Scattering, Phys. Rev. D 93 (2016) 113006 [arXiv:1603.08786] [INSPIRE].
  39. [39]
    V.I. Kopeikin, Flux and spectrum of reactor antineutrinos, Phys. Atom. Nucl. 75 (2012) 143 [INSPIRE].
  40. [40]
    C. Buck, A.P. Collin, J. Haser and M. Lindner, Investigating the Spectral Anomaly with Different Reactor Antineutrino Experiments, Phys. Lett. B 765 (2017) 159 [arXiv:1512.06656] [INSPIRE].
  41. [41]
    C. Giunti, Precise determination of the 235 U reactor antineutrino cross section per fission, Phys. Lett. B 764 (2017) 145 [arXiv:1608.04096] [INSPIRE].
  42. [42]
    P. Huber, NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum, Phys. Rev. Lett. 118 (2017) 042502 [arXiv:1609.03910] [INSPIRE].
  43. [43]
    G. Rich, The coherent collaboration and the first observation of coherent elastic neutrino-nucleus scattering,  https://doi.org/10.5281/zenodo.1286967, (2018).
  44. [44]
    J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion and an Axion-like Particle, JHEP 09 (2018) 051 [arXiv:1803.00993] [INSPIRE].
  45. [45]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].
  46. [46]
    R. Foot, Dissipative dark matter explains rotation curves, Phys. Rev. D 91 (2015) 123543 [arXiv:1502.07817] [INSPIRE].
  47. [47]
    L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].
  48. [48]
    S.P. Mikheyev and A. Yu. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441] [INSPIRE].
  49. [49]
    S.P. Mikheev and A. Yu. Smirnov, Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy, Nuovo Cim. C 9 (1986) 17 [INSPIRE].
  50. [50]
    C.A. Argüelles, V. Brdar and J. Kopp, Production of keV Sterile Neutrinos in Supernovae: New Constraints and Gamma Ray Observables, arXiv:1605.00654 [INSPIRE].
  51. [51]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. 67B (1977) 421 [INSPIRE].
  53. [53]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
  54. [54]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  55. [55]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. de Gouvêa and A. Kobach, Global Constraints on a Heavy Neutrino, Phys. Rev. D 93 (2016) 033005 [arXiv:1511.00683] [INSPIRE].
  57. [57]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and Collider Physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].
  58. [58]
    A.C. Vincent, E.F. Martinez, P. Hernández, M. Lattanzi and O. Mena, Revisiting cosmological bounds on sterile neutrinos, JCAP 04 (2015) 006 [arXiv:1408.1956] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    G. Bernardi et al., Search for Neutrino Decay, Phys. Lett. B 166 (1986) 479 [INSPIRE].
  60. [60]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.05471 [INSPIRE].
  61. [61]
    O. Lantwin, Search for new physics with the SHiP experiment at CERN, PoS(EPS-HEP2017304 [arXiv:1710.03277] [INSPIRE].
  62. [62]
    J.L. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd Search ExpeRiment at the LHC, Phys. Rev. D 97 (2018) 035001 [arXiv:1708.09389] [INSPIRE].
  63. [63]
    J.L. Feng, I. Galon, F. Kling and S. Trojanowski, Dark Higgs bosons at the ForwArd Search ExpeRiment, Phys. Rev. D 97 (2018) 055034 [arXiv:1710.09387] [INSPIRE].
  64. [64]
    F. Kling and S. Trojanowski, Heavy Neutral Leptons at FASER, Phys. Rev. D 97 (2018) 095016 [arXiv:1801.08947] [INSPIRE].
  65. [65]
    NA62 collaboration, E. Cortina Gil et al., Search for heavy neutral lepton production in K + decays, Phys. Lett. B 778 (2018) 137 [arXiv:1712.00297] [INSPIRE].
  66. [66]
    D. Curtin et al., Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case, arXiv:1806.07396 [INSPIRE].
  67. [67]
    Z. Xing and S. Zhou, Neutrinos in Particle Physics, Astronomy and Cosmology, Advanced Topics in Science and Technology in China, Springer, Heidelberg Germany (2011).Google Scholar
  68. [68]
    P. deNiverville, M. Pospelov and A. Ritz, Light new physics in coherent neutrino-nucleus scattering experiments, Phys. Rev. D 92 (2015) 095005 [arXiv:1505.07805] [INSPIRE].
  69. [69]
    S.-F. Ge and I.M. Shoemaker, Constraining Photon Portal Dark Matter with Texono and Coherent Data, JHEP 11 (2018) 066 [arXiv:1710.10889] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Garny, J. Heisig, B. Lülf and S. Vogl, Coannihilation without chemical equilibrium, Phys. Rev. D 96 (2017) 103521 [arXiv:1705.09292] [INSPIRE].
  71. [71]
    J. Ellis, F. Luo and K.A. Olive, Gluino Coannihilation Revisited, JHEP 09 (2015) 127 [arXiv:1503.07142] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].
  73. [73]
    Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  74. [74]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  75. [75]
    E. Molinaro, C.E. Yaguna and O. Zapata, FIMP realization of the scotogenic model, JCAP 07 (2014) 015 [arXiv:1405.1259] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S. Baumholzer, V. Brdar and P. Schwaller, The New νMSM (ννMSM): Radiative Neutrino Masses, keV-Scale Dark Matter and Viable Leptogenesis with sub-TeV New Physics, JHEP 08 (2018) 067 [arXiv:1806.06864] [INSPIRE].
  77. [77]
    R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev. D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations