Advertisement

Journal of High Energy Physics

, 2018:21 | Cite as

Deep learning as a parton shower

  • J. W. Monk
Open Access
Regular Article - Theoretical Physics

Abstract

We make the connection between certain deep learning architectures and the renormalisation group explicit in the context of QCD by using a deep learning network to construct a toy parton shower model. The model aims to describe proton-proton collisions at the Large Hadron Collider. A convolutional autoencoder learns a set of kernels that efficiently encode the behaviour of fully showered QCD collision events. The network is structured recursively so as to ensure self-similarity, and the number of trained network parameters is low. Randomness is introduced via a novel custom masking layer, which also preserves existing parton splittings by using layer-skipping connections. By applying a shower merging procedure, the network can be evaluated on unshowered events produced by a matrix element calculation. The trained network behaves as a parton shower that qualitatively reproduces jet-based observables.

Keywords

Phenomenological Models Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.W. Monk, Wavelet Analysis: Event De-noising, Shower Evolution and Jet Substructure Without Jets, arXiv:1405.5008 [INSPIRE].
  2. [2]
    P. Mehta and D.J. Schwab, An exact mapping between the Variational Renormalization Group and Deep Learning, arXiv:1410.3831.
  3. [3]
    C. Bény, Deep learning and the renormalization group, arXiv:1301.3124.
  4. [4]
    D. Oprisa and P. Toth, Criticality & Deep Learning II: Momentum Renormalisation Group, arXiv:1705.11023.
  5. [5]
    A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics, arXiv:1804.09720 [INSPIRE].
  6. [6]
    L. de Oliveira, M. Paganini and B. Nachman, Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis, Comput. Softw. Big Sci. 1 (2017) 4 [arXiv:1701.05927] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    F. Chollet et al., Keras, (2015) https://keras.io.
  8. [8]
    M. Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv:1603.04467 [INSPIRE].
  9. [9]
    J. Monk, APEMEN. Autoencoding Parton Emitting Model Encoded in Networks, (2018) https://github.com/twoev/APEMEN.
  10. [10]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  11. [11]
    S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A Matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].
  13. [13]
    T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  16. [16]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
  17. [17]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  18. [18]
    T. Dozat, Incorporating Nesterov Momentum into Adam, in proceedings of the International Conference on Learning Representations 2016 (ICLR 2016), Caribe Hilton, San Juan, Puerto Rico, 2-4 May 2016.Google Scholar
  19. [19]
    S. Ruder, An overview of gradient descent optimization algorithms, arXiv:1609.04747 [INSPIRE].
  20. [20]
    X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in proceedings of Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010), Chia Laguna Resort, Sardinia, Italy, 13-15 May 2010, volume 9, Y.W. Teh and M. Titterington eds., PMLR (2010), pp. 249-256.Google Scholar
  21. [21]
    S. Wolfram, Universality and complexity in cellular automata, Physica D 10 (1984) 1.Google Scholar
  22. [22]
    W. Li, N.H. Packard and C.G. Langton, Transition phenomena in cellular automata rule space, Physica D 45 (1990) 77.Google Scholar
  23. [23]
    G.J. Martinez, J.C. Seck-Tuoh-Mora and H. Zenil, Computation and Universality: Class IV versus Class III Cellular Automata, J. Cell. Automata 7 (2013) 393 [arXiv:1304.1242].MathSciNetzbMATHGoogle Scholar
  24. [24]
    K. Hamilton, P. Richardson and J. Tully, A Modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Marchesini and B.R. Webber, Simulation of QCD Jets Including Soft Gluon Interference, Nucl. Phys. B 238 (1984) 1 [INSPIRE].
  27. [27]
    G. Marchesini and B.R. Webber, Monte Carlo Simulation of General Hard Processes with Coherent QCD Radiation, Nucl. Phys. B 310 (1988) 461 [INSPIRE].
  28. [28]
    S. Gieseke, P. Stephens and B. Webber, New formalism for QCD parton showers, JHEP 12 (2003) 045 [hep-ph/0310083] [INSPIRE].
  29. [29]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
  30. [30]
    L. Lönnblad, Development strategies for PYTHIA version 7, Comput. Phys. Commun. 118 (1999) 213 [hep-ph/9810208] [INSPIRE].
  31. [31]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].
  32. [32]
    L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-Aware Recursive Neural Networks for Jet Physics, arXiv:1702.00748 [INSPIRE].
  35. [35]
    M. Elbayad, L. Besacier and J. Verbeek, Pervasive Attention: 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction, arXiv:1808.03867.
  36. [36]
    D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations