Advertisement

Journal of High Energy Physics

, 2018:14 | Cite as

Signatures of dark Higgs boson in light fermionic dark matter scenarios

  • Luc DarméEmail author
  • Soumya Rao
  • Leszek Roszkowski
Open Access
Regular Article - Experimental Physics

Abstract

Thermal dark matter scenarios based on light (sub-GeV) fermions typically require the presence of an extra dark sector containing both a massive dark photon along with a dark Higgs boson. The latter typically generates both the dark photon mass and an additional mass term for the dark sector fermions. This simple setup has both rich phenomenology and bright detection prospects at high-intensity accelerator experiments. We point out that in addition to the well studied pseudo-Dirac regime, this model can achieve the correct relic density in three different scenarios, and examine in details their properties and experimental prospects. We emphasize in particular the effect of the dark Higgs boson on both detection prospects and cosmological bounds.

Keywords

Beyond Standard Model Dark matter Fixed target experiments 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Roszkowski, E.M. Sessolo and S. Trojanowski, WIMP dark matter candidates and searchescurrent status and future prospects, Rept. Prog. Phys. 81 (2018) 066201 [arXiv:1707.06277] [INSPIRE].
  2. [2]
    T. Plehn, Yet Another Introduction to Dark Matter, arXiv:1705.01987 [INSPIRE].
  3. [3]
    G. Arcadi et al., The waning of the WIMP? A review of models, searches and constraints, Eur. Phys. J. C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].
  4. [4]
    J. Alexander et al., Dark Sectors 2016 Workshop: Community Report, FERMILAB-CONF-16-421 [arXiv:1608.08632] [INSPIRE].
  5. [5]
    M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, FERMILAB-CONF-17-282 [arXiv:1707.04591] [INSPIRE].
  6. [6]
    L. Darmé, S. Rao and L. Roszkowski, Light dark Higgs boson in minimal sub-GeV dark matter scenarios, JHEP 03 (2018) 084 [arXiv:1710.08430] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].
  8. [8]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
  9. [9]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].
  10. [10]
    B. Batell, M. Pospelov and A. Ritz, Probing a Secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].
  11. [11]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].
  12. [12]
    M. Duerr, A. Grohsjean, F. Kahlhoefer, B. Penning, K. Schmidt-Hoberg and C. Schwanenberger, Hunting the dark Higgs, JHEP 04 (2017) 143 [arXiv:1701.08780] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Ahmed, M. Duch, B. Grzadkowski and M. Iglicki, Multi-Component Dark Matter: the vector and fermion case, Eur. Phys. J. C 78 (2018) 905 [arXiv:1710.01853] [INSPIRE].
  14. [14]
    F.C. Correia and S. Fajfer, Restrained dark U(1)d at low energies, Phys. Rev. D 94 (2016) 115023 [arXiv:1609.00860] [INSPIRE].
  15. [15]
    S. Knapen, T. Lin and K.M. Zurek, Light Dark Matter: Models and Constraints, Phys. Rev. D 96 (2017) 115021 [arXiv:1709.07882] [INSPIRE].
  16. [16]
    J.L. Feng and J. Smolinsky, Impact of a resonance on thermal targets for invisible dark photon searches, Phys. Rev. D 96 (2017) 095022 [arXiv:1707.03835] [INSPIRE].
  17. [17]
    J.L. Feng, I. Galon, F. Kling and S. Trojanowski, Dark Higgs bosons at the ForwArd Search ExpeRiment, Phys. Rev. D 97 (2018) 055034 [arXiv:1710.09387] [INSPIRE].
  18. [18]
    B. Wojtsekhowski et al., Searching for a dark photon: Project of the experiment at VEPP-3, 2018 JINST 13 P02021 [arXiv:1708.07901] [INSPIRE].
  19. [19]
    J.L. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd Search ExpeRiment at the LHC, Phys. Rev. D 97 (2018) 035001 [arXiv:1708.09389] [INSPIRE].
  20. [20]
    A. Berlin, S. Gori, P. Schuster and N. Toro, Dark Sectors at the Fermilab SeaQuest Experiment, Phys. Rev. D 98 (2018) 035011 [arXiv:1804.00661] [INSPIRE].
  21. [21]
    A. Berlin, N. Blinov, G. Krnjaic, P. Schuster and N. Toro, Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons and Other New Physics with LDMX, arXiv:1807.01730 [INSPIRE].
  22. [22]
    J.R. Jordan, Y. Kahn, G. Krnjaic, M. Moschella and J. Spitz, Signatures of Pseudo-Dirac Dark Matter at High-Intensity Neutrino Experiments, Phys. Rev. D 98 (2018) 075020 [arXiv:1806.05185] [INSPIRE].
  23. [23]
    B. Batell, M. Pospelov and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].
  24. [24]
    B. Batell, R. Essig and Z. Surujon, Strong Constraints on Sub-GeV Dark Sectors from SLAC Beam Dump E137, Phys. Rev. Lett. 113 (2014) 171802 [arXiv:1406.2698] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Analyzing the Discovery Potential for Light Dark Matter, Phys. Rev. Lett. 115 (2015) 251301 [arXiv:1505.00011] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. deNiverville, C.-Y. Chen, M. Pospelov and A. Ritz, Light dark matter in neutrino beams: production modelling and scattering signatures at MiniBooNE, T2K and SHiP, Phys. Rev. D 95 (2017)035006 [arXiv:1609.01770] [INSPIRE].
  27. [27]
    BDX collaboration, M. Battaglieri et al., Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab, arXiv:1607.01390 [INSPIRE].
  28. [28]
    P. deNiverville and C. Frugiuele, Hunting sub-GeV dark matter with NOνA near detector, arXiv:1807.06501 [INSPIRE].
  29. [29]
    LSND collaboration, C. Athanassopoulos et al., The liquid scintillator neutrino detector and LAMPF neutrino source, Nucl. Instrum. Meth. A 388 (1997) 149 [nucl-ex/9605002] [INSPIRE].
  30. [30]
    J.D. Bjorken et al., Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].
  31. [31]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New Fixed-Target Experiments to Search for Dark Gauge Forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].
  32. [32]
    P. Schuster, N. Toro and I. Yavin, Terrestrial and Solar Limits on Long-Lived Particles in a Dark Sector, Phys. Rev. D 81 (2010) 016002 [arXiv:0910.1602] [INSPIRE].
  33. [33]
    R. Essig, P. Schuster and N. Toro, Probing Dark Forces and Light Hidden Sectors at Low-Energy e + e Colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].
  34. [34]
    J. Ellis, M. Fairbairn and P. Tunney, Anomaly-Free Dark Matter Models are not so Simple, JHEP 08 (2017) 053 [arXiv:1704.03850] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
  36. [36]
    K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z-Z mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].
  37. [37]
    D.E. Morrissey and A.P. Spray, New Limits on Light Hidden Sectors from Fixed-Target Experiments, JHEP 06 (2014) 083 [arXiv:1402.4817] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  39. [39]
    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
  40. [40]
    F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].
  41. [41]
    F. Staub, SARAH 3.2: Dirac Gauginos, UFO output and more, Comput. Phys. Commun. 184 (2013)1792 [arXiv:1207.0906] [INSPIRE].
  42. [42]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014)1773 [arXiv:1309.7223] [INSPIRE].
  43. [43]
    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  45. [45]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].
  46. [46]
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev. D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].
  47. [47]
    M. Duerr, K. Schmidt-Hoberg and S. Wild, Self-interacting dark matter with a stable vector mediator, JCAP 09 (2018) 033 [arXiv:1804.10385] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    R.T. D’Agnolo, C. Mondino, J.T. Ruderman and P.-J. Wang, Exponentially Light Dark Matter from Coannihilation, JHEP 08 (2018) 079 [arXiv:1803.02901] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    R.T. D’Agnolo and J.T. Ruderman, Light Dark Matter from Forbidden Channels, Phys. Rev. Lett. 115 (2015) 061301 [arXiv:1505.07107] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Fradette and M. Pospelov, BBN for the LHC: constraints on lifetimes of the Higgs portal scalars, Phys. Rev. D 96 (2017) 075033 [arXiv:1706.01920] [INSPIRE].
  51. [51]
    T.R. Slatyer and C.-L. Wu, General Constraints on Dark Matter Decay from the Cosmic Microwave Background, Phys. Rev. D 95 (2017) 023010 [arXiv:1610.06933] [INSPIRE].
  52. [52]
    K.M. Nollett and G. Steigman, BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs, Phys. Rev. D 89 (2014) 083508 [arXiv:1312.5725] [INSPIRE].
  53. [53]
    A. Burrows and J.M. Lattimer, The birth of neutron stars, Astrophys. J. 307 (1986) 178 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Burrows and J.M. Lattimer, Neutrinos from SN 1987A, Astrophys. J. 318 (1987) L63 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G. Raffelt and D. Seckel, Bounds on Exotic Particle Interactions from SN 1987a, Phys. Rev. Lett. 60 (1988) 1793 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G.G. Raffelt, Stars as laboratories for fundamental physics, Chicago University Press, Chicago, U.S.A., (1996).Google Scholar
  57. [57]
    J.B. Dent, F. Ferrer and L.M. Krauss, Constraints on Light Hidden Sector Gauge Bosons from Supernova Cooling, arXiv:1201.2683 [INSPIRE].
  58. [58]
    H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, Phys. Lett. B 725 (2013)190 [arXiv:1302.3884] [INSPIRE].
  59. [59]
    J. Redondo and G. Raffelt, Solar constraints on hidden photons re-visited, JCAP 08 (2013) 034 [arXiv:1305.2920] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D. Kazanas, R.N. Mohapatra, S. Nussinov, V.L. Teplitz and Y. Zhang, Supernova Bounds on the Dark Photon Using its Electromagnetic Decay, Nucl. Phys. B 890 (2014) 17 [arXiv:1410.0221] [INSPIRE].
  61. [61]
    E. Rrapaj and S. Reddy, Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints, Phys. Rev. C 94 (2016) 045805 [arXiv:1511.09136] [INSPIRE].
  62. [62]
    J.H. Chang, R. Essig and S.D. McDermott, Revisiting Supernova 1987A Constraints on Dark Photons, JHEP 01 (2017) 107 [arXiv:1611.03864] [INSPIRE].ADSzbMATHGoogle Scholar
  63. [63]
    E. Hardy and R. Lasenby, Stellar cooling bounds on new light particles: plasma mixing effects, JHEP 02 (2017) 033 [arXiv:1611.05852] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    C. Mahoney, A.K. Leibovich and A.R. Zentner, Updated Constraints on Self-Interacting Dark Matter from Supernova 1987A, Phys. Rev. D 96 (2017) 043018 [arXiv:1706.08871] [INSPIRE].
  65. [65]
    J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion and an Axion-like Particle, JHEP 09 (2018) 051 [arXiv:1803.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Andreas et al., Proposal for an Experiment to Search for Light Dark Matter at the SPS, arXiv:1312.3309 [INSPIRE].
  67. [67]
    E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Testing GeV-Scale Dark Matter with Fixed-Target Missing Momentum Experiments, Phys. Rev. D 91 (2015) 094026 [arXiv:1411.1404] [INSPIRE].
  68. [68]
    BaBar collaboration, J.P. Lees et al., Search for Invisible Decays of a Dark Photon Produced in e + e Collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].
  69. [69]
    NA64 collaboration, D. Banerjee et al., Search for vector mediator of Dark Matter production in invisible decay mode, Phys. Rev. D 97 (2018) 072002 [arXiv:1710.00971] [INSPIRE].
  70. [70]
    NA48/2 collaboration, J.R. Batley et al., Search for the dark photon in π0 decays, Phys. Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].
  71. [71]
    BaBar collaboration, J.P. Lees et al., Search for a Dark Photon in e + e Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  72. [72]
    LHCb collaboration, Search for Dark Photons Produced in 13 TeV pp Collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].
  73. [73]
    E. Izaguirre, Y. Kahn, G. Krnjaic and M. Moschella, Testing Light Dark Matter Coannihilation With Fixed-Target Experiments, Phys. Rev. D 96 (2017) 055007 [arXiv:1703.06881] [INSPIRE].
  74. [74]
    MiniBooNE DM collaboration, A.A. Aguilar-Arevalo et al., Dark Matter Search in Nucleon, Pion and Electron Channels from a Proton Beam Dump with MiniBooNE, arXiv:1807.06137 [INSPIRE].
  75. [75]
    L. Darmé, S. Rao and L. Roszkowski, Light dark sector at colliders and fixed target experiments, in 53rd Rencontres de Moriond on QCD and High Energy Interactions (Moriond QCD 2018) La Thuile, Italy, March 17-24, 2018, arXiv:1805.06179 [INSPIRE].
  76. [76]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    LSND collaboration, L.B. Auerbach et al., Measurement of electron - neutrino - electron elastic scattering, Phys. Rev. D 63 (2001) 112001 [hep-ex/0101039] [INSPIRE].
  78. [78]
    S. Ajimura et al., Technical Design Report (TDR): Searching for a Sterile Neutrino at J-PARC MLF (E56, JSNS2), arXiv:1705.08629 [INSPIRE].
  79. [79]
    K.J. Kim and Y.-S. Tsai, Improved Weizsäcker-Williams method and its application to lepton and W-boson pair production, Phys. Rev. D 8 (1973) 3109 [INSPIRE].
  80. [80]
    Y.-S. Tsai, Pair Production and Bremsstrahlung of Charged Leptons, Rev. Mod. Phys. 46 (1974)815 [Erratum ibid. 49 (1977) 521] [INSPIRE].
  81. [81]
    Y.-S. Tsai, Axion Bremsstrahlung by an electron beam, Phys. Rev. D 34 (1986) 1326 [INSPIRE].
  82. [82]
  83. [83]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  84. [84]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.National Centre for Nuclear ResearchWarsawPoland
  2. 2.Astrocent, Nicolaus Copernicus Astronomical Center Polish Academy of SciencesWarsawPoland

Personalised recommendations