Advertisement

6D attractors and black hole microstates

  • Seyed Morteza Hosseini
  • Kiril Hristov
  • Achilleas Passias
  • Alberto Zaffaroni
Open Access
Regular Article - Theoretical Physics

Abstract

We find a family of AdS2×ℳ4 supersymmetric solutions of the six-dimensional F(4) gauged supergravity coupled to one vector multiplet that arises as a low energy description of massive type IIA supergravity on (warped) AdS6 × S4. ℳ4 is either a Kähler-Einstein manifold or a product of two Riemann surfaces with a constant curvature metric. These solutions correspond to the near-horizon region of a family of static magnetically charged black holes. In the case where ℳ4 is a product of Riemann surfaces, we successfully compare their entropy to a microscopic counting based on the recently computed topologically twisted index of the five-dimensional \( \mathcal{N} \) = 1 USp(2N) theory with Nf fundamental flavors and an antisymmetric matter field. Furthermore, our results suggest that the near-horizon regions exhibit an attractor mechanism for the scalars in the matter coupled F(4) gauged supergravity, and we give a proposal for it.

Keywords

Black Holes in String Theory AdS-CFT Correspondence Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Katmadas, Static BPS black holes in U(1) gauged supergravity, JHEP 09 (2014) 027 [arXiv:1405.4901] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Halmagyi, Static BPS black holes in AdS 4 with general dyonic charges, JHEP 03 (2015) 032 [arXiv:1408.2831] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS4, Phys. Lett. B 771 (2017) 462 [arXiv:1608.07294] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc. Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  10. [10]
    S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d \( \mathcal{N} \) = 2 theories: twisted index, free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S.M. Hosseini and N. Mekareeya, Large N topologically twisted index: necklace quivers, dualities and Sasaki-Einstein spaces, JHEP 08 (2016) 089 [arXiv:1604.03397] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S.M. Hosseini, A. Nedelin and A. Zaffaroni, The Cardy limit of the topologically twisted index and black strings in AdS 5, JHEP 04 (2017) 014 [arXiv:1611.09374] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    S.M. Hosseini, Black hole microstates and supersymmetric localization, Ph.D. thesis, Milan Bicocca University, Milan, Italy (2018), arXiv:1803.01863 [INSPIRE].
  14. [14]
    J. Hong and J.T. Liu, The topologically twisted index of \( \mathcal{N} \) = 4 super-Yang-Mills on T 2 × S 2 and the elliptic genus, JHEP 07 (2018) 018 [arXiv:1804.04592] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Cabo-Bizet, V.I. Giraldo-Rivera and L.A. Pando Zayas, Microstate counting of AdS 4 hyperbolic black hole entropy via the topologically twisted index, JHEP 08 (2017) 023 [arXiv:1701.07893] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of black hole microstates in AdS 4, JHEP 02 (2018) 054 [arXiv:1707.04257] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS 4 black holes in massive IIA supergravity, JHEP 10 (2017) 190 [arXiv:1707.06884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    F. Benini, H. Khachatryan and P. Milan, Black hole entropy in massive Type IIA, Class. Quant. Grav. 35 (2018) 035004 [arXiv:1707.06886] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS 4, JHEP 03 (2018) 050 [arXiv:1801.03135] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    C. Toldo and B. Willett, Partition functions on 3d circle bundles and their gravity duals, JHEP 05 (2018) 116 [arXiv:1712.08861] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Gang and N. Kim, Large N twisted partition functions in 3d-3d correspondence and Holography, arXiv:1808.02797 [INSPIRE].
  22. [22]
    J.T. Liu, L.A. Pando Zayas, V. Rathee and W. Zhao, One-loop test of quantum black holes in Anti-de Sitter space, Phys. Rev. Lett. 120 (2018) 221602 [arXiv:1711.01076] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.T. Liu, L.A. Pando Zayas, V. Rathee and W. Zhao, Toward microstate counting beyond large N in localization and the dual one-loop quantum supergravity, JHEP 01 (2018) 026 [arXiv:1707.04197] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    I. Jeon and S. Lal, Logarithmic corrections to entropy of magnetically charged AdS 4 black holes, Phys. Lett. B 774 (2017) 41 [arXiv:1707.04208] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    N. Halmagyi and S. Lal, On the on-shell: the action of AdS 4 black holes, JHEP 03 (2018) 146 [arXiv:1710.09580] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Cabo-Bizet et al., Entropy functional and the holographic attractor mechanism, JHEP 05 (2018) 155 [arXiv:1712.01849] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    K. Hristov, I. Lodato and V. Reys, On the quantum entropy function in 4d gauged supergravity, JHEP 07 (2018) 072 [arXiv:1803.05920] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J. Nian and X. Zhang, Entanglement entropy of ABJM theory and entropy of topological black hole, JHEP 07 (2017) 096 [arXiv:1705.01896] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S.M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of rotating BPS black holes in AdS 5, JHEP 07 (2017) 106 [arXiv:1705.05383] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    S.M. Hosseini, K. Hristov and A. Zaffaroni, A note on the entropy of rotating BPS AdS 7 × S 4 black holes, JHEP 05 (2018) 121 [arXiv:1803.07568] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    J.T. Liu, L.A. Pando Zayas and S. Zhou, Subleading microstate counting in the dual to massive type IIA, arXiv:1808.10445 [INSPIRE].
  32. [32]
    S.M. Hosseini, I. Yaakov and A. Zaffaroni, Topologically twisted indices in five dimensions and holography, JHEP 11 (2018) 119 [arXiv:1808.06626] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P.M. Crichigno, D. Jain and B. Willett, 5D partition functions with a twist, JHEP 11 (2018) 058 [arXiv:1808.06744] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP 07 (2016) 020 [arXiv:1511.09462] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    N. Bobev and P.M. Crichigno, Universal RG flows across dimensions and holography, JHEP 12 (2017) 065 [arXiv:1708.05052] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    M. Suh, D4-branes wrapped on supersymmetric four-cycles, arXiv:1809.03517 [INSPIRE].
  38. [38]
    A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Ferrara, A. Kehagias, H. Partouche and A. Zaffaroni, AdS 6 interpretation of 5D superconformal field theories, Phys. Lett. B 431 (1998) 57 [hep-th/9804006] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L.J. Romans, The F 4 gauged supergravity in six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    R. D’Auria, S. Ferrara and S. Vaula, F 4 supergravity and 5D superconformal field theories, Class. Quant. Grav. 18 (2001) 3181 [hep-th/0008209] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    L. Andrianopoli, R. D’Auria and S. Vaula, Matter coupled F 4 gauged supergravity Lagrangian, JHEP 05 (2001) 065 [hep-th/0104155] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I. Bah, A. Passias and P. Weck, Holographic duals of five-dimensional SCFTs on a Riemann surface, arXiv:1807.06031 [INSPIRE].
  44. [44]
    S. Ferrara, A. Marrani, J.F. Morales and H. Samtleben, Intersecting Attractors, Phys. Rev. D 79 (2009) 065031 [arXiv:0812.0050] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    H. Het Lam and S. Vandoren, BPS solutions of six-dimensional (1, 0) supergravity coupled to tensor multiplets, JHEP 06 (2018) 021 [arXiv:1804.04681] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Suh, D4-branes wrapped on supersymmetric four-cycles from matter coupled F(4) gauged supergravity, arXiv:1810.00675 [INSPIRE].
  47. [47]
    M. Cvetič, H. Lü and C.N. Pope, Gauged six-dimensional supergravity from massive type IIA, Phys. Rev. Lett. 83 (1999) 5226 [hep-th/9906221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    P. Karndumri, Twisted compactification of N = 2 5D SCFTs to three and two dimensions from F(4) gauged supergravity, JHEP 09 (2015) 034 [arXiv:1507.01515] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  49. [49]
    M. Gutperle, J. Kaidi and H. Raj, Janus solutions in six-dimensional gauged supergravity, JHEP 12 (2017) 018 [arXiv:1709.09204] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    M. Gutperle, J. Kaidi and H. Raj, Mass deformations of 5d SCFTs via holography, JHEP 02 (2018) 165 [arXiv:1801.00730] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    K. Hristov, C. Toldo and S. Vandoren, On BPS bounds in D = 4 N = 2 gauged supergravity, JHEP 12 (2011) 014 [arXiv:1110.2688] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    K. Hristov, On BPS bounds in D = 4 N = 2 gauged supergravity II: general matter couplings and black hole masses, JHEP 03 (2012) 095 [arXiv:1112.4289] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Romans supergravity from five-dimensional holograms, JHEP 05 (2018) 039 [arXiv:1712.10313] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Seyed Morteza Hosseini
    • 1
  • Kiril Hristov
    • 2
  • Achilleas Passias
    • 3
  • Alberto Zaffaroni
    • 4
    • 5
  1. 1.Kavli IPMU (WPI), UTIASThe University of TokyoKashiwaJapan
  2. 2.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  4. 4.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  5. 5.INFN — Sezione di Milano-BicoccaMilanoItaly

Personalised recommendations