Journal of High Energy Physics

, 2017:153 | Cite as

Learning from Higgs physics at future Higgs factories

  • Jiayin Gu
  • Honglei Li
  • Zhen Liu
  • Shufang Su
  • Wei Su
Open Access
Regular Article - Theoretical Physics


Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explore its sensitivity to new physics models at the electron-positron colliders. In particular, we study two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We perform a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtain the limits on the singlet-doublet mixing angle sin θ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyze tree level effects in tan β vs. cos(βα) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtain lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compare the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).


Phenomenology of Field Theories in Higher Dimensions Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    CEPC-SPPC study group, CEPC-SPPC preliminary conceptual design report. 1. Physics and detector,
  2. [2]
    TLEP Design Study Working Group collaboration, M. Bicer et al., First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  3. [3]
    H. Baer et al., The International Linear Collider technical design report — Volume 2: physics, arXiv:1306.6352.
  4. [4]
    CLICdp, CLIC collaboration, M.J. Boland et al., Updated baseline for a staged Compactk Linear Collider, arXiv:1608.07537 [INSPIRE].
  5. [5]
    H. Abramowicz et al., Higgs physics at the CLIC electron-positron linear collider, Eur. Phys. J. C 77 (2017) 475 [arXiv:1608.07538] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].ADSGoogle Scholar
  7. [7]
    Z. Liu, L.-T. Wang and H. Zhang, Exotic decays of the 125 GeV Higgs boson at future e+e lepton colliders, Chin. Phys. C 41 (2017) 063102 [arXiv:1612.09284] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Liu, X.-P. Wang and F. Yu, A tale of two portals: testing light, hidden new physics at future e+e colliders, JHEP 06 (2017) 077 [arXiv:1704.00730] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Dawson et al., Working group report: Higgs boson, in the proceedings of the Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1310.8361 [INSPIRE].
  10. [10]
    LHC Higgs Cross Section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  11. [11]
    T. Han, Z. Liu and J. Sayre, Potential precision on Higgs couplings and total width at the ILC, Phys. Rev. D 89 (2014) 113006 [arXiv:1311.7155] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.E. Peskin, Estimation of LHC and ILC Capabilities for Precision Higgs Boson Coupling Measurements, in the proceedings of the Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1312.4974 [INSPIRE].
  13. [13]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, JHEP 05 (2014) 046 [arXiv:1303.3570] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, Probing the standard model with Higgs signal rates from the Tevatron, the LHC and a future ILC, JHEP 11 (2014) 039 [arXiv:1403.1582] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision analysis updates 2014, Phys. Rev. D 90 (2014) 095009 [arXiv:1407.8236] [INSPIRE].ADSGoogle Scholar
  17. [17]
    V. Barger, L.L. Everett, C.B. Jackson, A.D. Peterson and G. Shaughnessy, Measuring the two-Higgs doublet model scalar potential at LHC14, Phys. Rev. D 90 (2014) 095006 [arXiv:1408.2525] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S. Fichet and G. Moreau, Anatomy of the Higgs fits: a first guide to statistical treatments of the theoretical uncertainties, Nucl. Phys. B 905 (2016) 391 [arXiv:1509.00472] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    M. Reece, Physics at a Higgs factory, Int. J. Mod. Phys. A 31 (2016) 1644003 [arXiv:1609.03018] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Higgs factories: Higgsstrahlung versus W fusion, Phys. Rev. D 96 (2017) 075044 [arXiv:1706.02174] [INSPIRE].ADSGoogle Scholar
  21. [21]
    D. d’Enterria, Higgs physics at the future circular collider, PoS(ICHEP2016)434 [arXiv:1701.02663] [INSPIRE].
  22. [22]
    R. Essig, P. Meade, H. Ramani and Y.-M. Zhong, Higgs-precision constraints on colored naturalness, JHEP 09 (2017) 085 [arXiv:1707.03399] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Voigt and S. Westhoff, Virtual signatures of dark sectors in Higgs couplings, JHEP 11 (2017) 009 [arXiv:1708.01614] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    V. Barger, T. Han, P. Langacker, B. McElrath and P. Zerwas, Effects of genuine dimension-six Higgs operators, Phys. Rev. D 67 (2003) 115001 [hep-ph/0301097] [INSPIRE].
  25. [25]
    J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  28. [28]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].ADSGoogle Scholar
  29. [29]
    T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining triple gauge boson couplings from Higgs data, Phys. Rev. Lett. 111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Falkowski, Effective field theory approach to LHC Higgs data, Pramana 87 (2016) 39 [arXiv:1505.00046] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Butter et al., The gauge-Higgs legacy of the LHC run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    N. Craig, M. Farina, M. McCullough and M. Perelstein, Precision Higgsstrahlung as a probe of new physics, JHEP 03 (2015) 146 [arXiv:1411.0676] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    M. Beneke, D. Boito and Y.-M. Wang, Anomalous Higgs couplings in angular asymmetries of HZℓ+ and e+eHZ, JHEP 11 (2014) 028 [arXiv:1406.1361] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N. Craig, J. Gu, Z. Liu and K. Wang, Beyond Higgs couplings: probing the Higgs with angular observables at future e+e colliders, JHEP 03 (2016) 050 [arXiv:1512.06877] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Ellis and T. You, Sensitivities of prospective future e+e colliders to decoupled new physics, JHEP 03 (2016) 089 [arXiv:1510.04561] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing new physics scales from Higgs and electroweak observables at e+e Higgs factory, JHEP 10 (2016) 007 [arXiv:1603.03385] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Ellis, P. Roloff, V. Sanz and T. You, Dimension-6 operator analysis of the CLIC sensitivity to new physics, JHEP 05 (2017) 096 [arXiv:1701.04804] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Durieux, C. Grojean, J. Gu and K. Wang, The leptonic future of the Higgs, JHEP 09 (2017) 014 [arXiv:1704.02333] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Barklow et al., Improved formalism for precision Higgs coupling fits, arXiv:1708.08912 [INSPIRE].
  40. [40]
    T. Barklow, K. Fujii, S. Jung, M.E. Peskin and J. Tian, Model-Independent determination of the triple Higgs coupling at e+e colliders, arXiv:1708.09079 [INSPIRE].
  41. [41]
    Q.-H. Cao, F.P. Huang, K.-P. Xie and X. Zhang, Testing electroweak phase transition in the scalar extension models at lepton colliders, arXiv:1708.04737 [INSPIRE].
  42. [42]
    H. Khanpour and M. Mohammadi Najafabadi, Constraining Higgs boson effective couplings at electron-positron colliders, Phys. Rev. D 95 (2017) 055026 [arXiv:1702.00951] [INSPIRE].ADSGoogle Scholar
  43. [43]
    H. Khanpour, S. Khatibi and M. Mohammadi Najafabadi, Probing Higgs boson couplings in H + γ production at the LHC, Phys. Lett. B 773 (2017) 462 [arXiv:1702.05753] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    Q.-H. Cao, H.-R. Wang and Y. Zhang, Probing HZγ and Hγγ anomalous couplings in the process e+e, Chin. Phys. C 39 (2015) 113102 [arXiv:1505.00654] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Barklow et al., ILC operating scenarios, arXiv:1506.07830 [INSPIRE].
  46. [46]
    M. Benedikt and F. Zimmermann, Future circular collider study, status and progress, ap.pdf.
  47. [47]
    K. Fujii et al., Physics case for the International Linear Collider, arXiv:1506.05992 [INSPIRE].
  48. [48]
    D.M. Asner et al., ILC Higgs White Paper, in the proceedings of the Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1310.0763 [INSPIRE].
  49. [49]
    A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett. 116 (2016) 011801 [arXiv:1508.00581] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    I. Marchesini, Triple gauge couplings and polarization at the ILC and leakage in a highly granular calorimeter, Ph.D. thesis, Hamburg University, Hamburg, Germany (2011).Google Scholar
  51. [51]
    J.D. Wells and Z. Zhang, Status and prospects of precision analyses with e+eW +W , Phys. Rev. D 93 (2016) 034001 [arXiv:1507.01594] [INSPIRE].ADSGoogle Scholar
  52. [52]
    L. Bian, J. Shu and Y. Zhang, Prospects for triple gauge coupling measurements at future lepton colliders and the 14 TeV LHC, JHEP 09 (2015) 206 [arXiv:1507.02238] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Gori, J. Gu and L.-T. Wang, The \( Zb\overline{b} \) couplings at future e+e colliders, JHEP 04 (2016) 062 [arXiv:1508.07010] [INSPIRE].ADSGoogle Scholar
  54. [54]
    W. Su and J.M. Yang, SUSY effects in Rb: revisited under current experimental constraints, Phys. Lett. B 757 (2016) 136 [arXiv:1601.07758] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  56. [56]
    ATLAS collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016 (2014).
  57. [57]
    C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].
  58. [58]
    J.R. Ellis et al., Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].ADSGoogle Scholar
  59. [59]
    M. Drees, Supersymmetric models with extended Higgs sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. McCullough, An indirect model-dependent probe of the Higgs self-coupling, Phys. Rev. D 90 (2014) 015001 [arXiv:1312.3322] [INSPIRE].ADSGoogle Scholar
  61. [61]
    B. Henning, X. Lu and H. Murayama, What do precision Higgs measurements buy us?, arXiv:1404.1058 [INSPIRE].
  62. [62]
    B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    C. Grojean and et al., The fate of Higgs self-coupling at lepton colliders, to appear.Google Scholar
  64. [64]
    C.F. Dürig, Measuring the Higgs self-coupling at the International Linear Collider, Ph.D. thesis, Hamburg University, Hamburg, Germany (2016).Google Scholar
  65. [65]
    C.-Y. Chen, S. Dawson and I.M. Lewis, Exploring resonant di-Higgs boson production in the Higgs singlet model, Phys. Rev. D 91 (2015) 035015 [arXiv:1410.5488] [INSPIRE].ADSGoogle Scholar
  66. [66]
    S.P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [hep-ph/9709356] [INSPIRE].
  67. [67]
    R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the standard model Higgs boson: alignment without decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    P.S. Bhupal Dev and A. Pilaftsis, Maximally symmetric two Higgs doublet model with natural standard model alignment, JHEP 12 (2014) 024 [Erratum ibid. 11 (2015) 147] [arXiv:1408.3405] [INSPIRE].
  70. [70]
    B. Coleppa, F. Kling and S. Su, Charged Higgs search via AW ±/HW ± channel, JHEP 12 (2014) 148 [arXiv:1408.4119] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    LHC Higgs Cross Section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  73. [73]
    B. Coleppa, F. Kling and S. Su, Constraining type II 2HDM in light of LHC Higgs searches, JHEP 01 (2014) 161 [arXiv:1305.0002] [INSPIRE].ADSGoogle Scholar
  74. [74]
    V. Barger, L.L. Everett, H.E. Logan and G. Shaughnessy, Scrutinizing the 125 GeV Higgs boson in two Higgs doublet models at the LHC, ILC and Muon Collider, Phys. Rev. D 88 (2013) 115003 [arXiv:1308.0052] [INSPIRE].ADSGoogle Scholar
  75. [75]
    P.M. Ferreira, J.F. Gunion, H.E. Haber and R. Santos, Probing wrong-sign Yukawa couplings at the LHC and a future linear collider, Phys. Rev. D 89 (2014) 115003 [arXiv:1403.4736] [INSPIRE].ADSGoogle Scholar
  76. [76]
    L. Wang, R. Shi and X.-F. Han, Wrong sign Yukawa coupling of the 2HDM plus a singlet scalar dark matter confronted with dark matter and Higgs data, arXiv:1708.06882 [INSPIRE].
  77. [77]
    S. Kanemura, M. Kikuchi and K. Yagyu, Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements, Nucl. Phys. B 896 (2015) 80 [arXiv:1502.07716] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  78. [78]
    S. Kanemura, M. Kikuchi and K. Yagyu, Radiative corrections to the Yukawa coupling constants in two Higgs doublet models, Phys. Lett. B 731 (2014) 27 [arXiv:1401.0515] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S. Kanemura, Y. Okada, E. Senaha and C.P. Yuan, Higgs coupling constants as a probe of new physics, Phys. Rev. D 70 (2004) 115002 [hep-ph/0408364] [INSPIRE].
  80. [80]
    T. Han, S.K. Kang and J. Sayre, Muon g − 2 in the aligned two Higgs doublet model, JHEP 02 (2016) 097 [arXiv:1511.05162] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    G. Bhattacharyya and D. Das, Scalar sector of two-Higgs-doublet models: a minireview, Pramana 87 (2016) 40 [arXiv:1507.06424] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    D. Das and I. Saha, Search for a stable alignment limit in two-Higgs-doublet models, Phys. Rev. D 91 (2015) 095024 [arXiv:1503.02135] [INSPIRE].ADSGoogle Scholar
  83. [83]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  84. [84]
    I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].
  85. [85]
    F. Kling, J.M. No and S. Su, Anatomy of exotic Higgs decays in 2HDM, JHEP 09 (2016) 093 [arXiv:1604.01406] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    H.E. Haber and O. Stål, New LHC benchmarks for the \( \mathcal{C}\mathcal{P} \)-conserving two-Higgs-doublet model, Eur. Phys. J. C 75 (2015) 491 [arXiv:1507.04281] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36.1 fb−1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, arXiv:1709.07242.
  88. [88]
    B. Coleppa, F. Kling and S. Su, Exotic Higgs decay via AZ/HZ channel: a snowmass whitepaper, arXiv:1308.6201 [INSPIRE].
  89. [89]
    B. Coleppa, F. Kling and S. Su, Exotic decays of a heavy neutral Higgs through HZ/AZ channel, JHEP 09 (2014) 161 [arXiv:1404.1922] [INSPIRE].ADSGoogle Scholar
  90. [90]
    F. Kling, A. Pyarelal and S. Su, Light charged Higgs bosons to AW/HW via top decay, JHEP 11 (2015) 051 [arXiv:1504.06624] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    A. Arbey, F. Mahmoudi, O. Stal and T. Stefaniak, Status of the charged Higgs boson in two Higgs doublet models, arXiv:1706.07414 [INSPIRE].
  92. [92]
    T. Han, T. Li, S. Su and L.-T. Wang, Non-decoupling MSSM Higgs sector and light superpartners, JHEP 11 (2013) 053 [arXiv:1306.3229] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  94. [94]
    A. Thamm, R. Torre and A. Wulzer, Future tests of Higgs compositeness: direct vs. indirect, JHEP 07 (2015) 100 [arXiv:1502.01701] [INSPIRE].
  95. [95]
    S. Kanemura, K. Kaneta, N. Machida, S. Odori and T. Shindou, Single and double production of the Higgs boson at hadron and lepton colliders in minimal composite Higgs models, Phys. Rev. D 94 (2016) 015028 [arXiv:1603.05588] [INSPIRE].ADSGoogle Scholar
  96. [96]
    D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of strong coupling for LHC searches, JHEP 11 (2016) 141 [arXiv:1603.03064] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  98. [98]
    M. Carena, L. Da Rold and E. Pontón, Minimal composite Higgs models at the LHC, JHEP 06 (2014) 159 [arXiv:1402.2987] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    T. Han, Z. Liu, Z. Qian and J. Sayre, Improving Higgs coupling measurements through ZZ fusion at the ILC, Phys. Rev. D 91 (2015) 113007 [arXiv:1504.01399] [INSPIRE].ADSGoogle Scholar
  100. [100]
    ATLAS collaboration, Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2013-014 (2013).
  101. [101]
    ATLAS collaboration, HL-LHC projections for signal and background yield measurements of the Hγγ when the Higgs boson is produced in association with t quarks, W or Z bosons, ATL-PHYS-PUB-2014-012 (2014).
  102. [102]
    ATLAS collaboration, Update of the prospects for the HZγ search at the high-luminosity LHC, ATL-PHYS-PUB-2014-006 (2014).
  103. [103]
    ATLAS collaboration, Prospects for the study of the Higgs boson in the VH(bb) channel at HL-LHC, ATL-PHYS-PUB-2014-011 (2014).
  104. [104]
    ATLAS collaboration, Studies of the VBF Hτlτhad analysis at high luminosity LHC conditions, ATL-PHYS-PUB-2014-018 (2014).
  105. [105]
    C. Hartmann and M. Trott, Higgs decay to two photons at one loop in the standard model effective field theory, Phys. Rev. Lett. 115 (2015) 191801 [arXiv:1507.03568] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS (update), ATL-PHYS-PUB-2012-004 (2012).
  107. [107]
    G. Passarino and M.J.G. Veltman, One loop corrections for e+e annihilation into μ+μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.School of Physics and TechnologyUniversity of JinanJinanChina
  2. 2.DESYHamburgGermany
  3. 3.Center for Future High Energy Physics, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  4. 4.Department of PhysicsUniversity of ArizonaTucsonU.S.A.
  5. 5.Theoretical Physics DepartmentFermi National Accelerator LaboratoryBataviaU.S.A.
  6. 6.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  7. 7.School of PhysicsUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations