Advertisement

Journal of High Energy Physics

, 2017:152 | Cite as

7D supersymmetric Yang-Mills on curved manifolds

  • Konstantina Polydorou
  • Andreas Rocén
  • Maxim Zabzine
Open Access
Regular Article - Theoretical Physics

Abstract

We study 7D maximally supersymmetric Yang-Mills theory on curved manifolds that admit Killing spinors. If the manifold admits at least two Killing spinors (Sasaki-Einstein manifolds) we are able to rewrite the supersymmetric theory in terms of a cohomological complex. In principle this cohomological complex makes sense for any K-contact manifold. For the case of toric Sasaki-Einstein manifolds we derive explicitly the perturbative part of the partition function and speculate about the non-perturbative part. We also briefly discuss the case of 3-Sasaki manifolds and suggest a plausible form for the full non-perturbative answer.

Keywords

Differential and Algebraic Geometry Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  2. [2]
    V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].MathSciNetMATHGoogle Scholar
  3. [3]
    V. Pestun and M. Zabzine, Introduction to localization in quantum field theory, J. Phys. A 50 (2017) 443001 [arXiv:1608.02953] [INSPIRE].MathSciNetMATHADSGoogle Scholar
  4. [4]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J.A. Minahan and M. Zabzine, Gauge theories with 16 supersymmetries on spheres, JHEP 03 (2015) 155 [arXiv:1502.07154] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Qiu, L. Tizzano, J. Winding and M. Zabzine, Gluing Nekrasov partition functions, Commun. Math. Phys. 337 (2015) 785 [arXiv:1403.2945] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  8. [8]
    G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  9. [9]
    E. Witten, Topological Quantum Field Theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  10. [10]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    M. Blau, Killing spinors and SYM on curved spaces, JHEP 11 (2000) 023 [hep-th/0005098] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  13. [13]
    C.P. Boyer and K. Galicki, Sasakian geometry, Oxford University Press, Oxford U.K. (2008).Google Scholar
  14. [14]
    C. Bär, Real Killing spinors and holonomy, Commun. Math. Phys. 154 (1993) 509.MathSciNetCrossRefMATHADSGoogle Scholar
  15. [15]
    T. Friedrich, I. Kath, A. Moroianu, and U. Semmelmann, On nearly parallel G2-structures, J. Geom. Phys. 23 (1997) 259.MathSciNetCrossRefMATHADSGoogle Scholar
  16. [16]
    K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric Gauge Theories on the Five-Sphere, Nucl. Phys. B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].
  17. [17]
    J. Qiu and M. Zabzine, Review of localization for 5d supersymmetric gauge theories, J. Phys. A 50 (2017) 443014 [arXiv:1608.02966] [INSPIRE].
  18. [18]
    N. Berkovits, Ten-dimensional super Yang-Mills action with off-shell supersymmetry, Phys. Lett. B 318 (1993) 104 [hep-th/9308128] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    M. Fujitsuka, M. Honda and Y. Yoshida, Maximal super Yang-Mills theories on curved background with off-shell supercharges, JHEP 01 (2013) 162 [arXiv:1209.4320] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  20. [20]
    D.E. Blair, Progress in Mathematics. Vol. 203: Riemannian Geometry of Contact and Symplectic Manifolds, second edition, Birkhauser, Boston U.S.A. (2010).Google Scholar
  21. [21]
    H. Geiges, Cambridge Studies in Advanced Mathematics. Vol. 109: An introduction to contact topology, Cambridge University Press, Cambridge U.K. (2008).Google Scholar
  22. [22]
    J. Schmude, Localisation on Sasaki-Einstein manifolds from holomorphic functions on the cone, JHEP 01 (2015) 119 [arXiv:1401.3266] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    J. Sparks, Sasaki-Einstein Manifolds, Surveys Diff. Geom. 16 (2011) 265 [arXiv:1004.2461] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    J.J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. Math. (1965) 451.Google Scholar
  25. [25]
    J. Källén and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].
  26. [26]
    D. Baraglia and P. Hekmati, Moduli spaces of contact instantons, Adv. Math. 294 (2016) 562 [arXiv:1401.5140] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    A. Iqbal, N. Nekrasov, A. Okounkov and C. Vafa, Quantum foam and topological strings, JHEP 04 (2008) 011 [hep-th/0312022] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  28. [28]
    A.C. da Silva, Lectures on Symplectic Geometry, Lecture Notes Math. 1764 (2008) 1.ADSGoogle Scholar
  29. [29]
    E. Lerman, Contact toric manifolds, J. Symplectic Geom. 1 (2002) 659 [math/0107201] [INSPIRE].
  30. [30]
    J.A. Minahan, Localizing gauge theories on S d, JHEP 04 (2016) 152 [arXiv:1512.06924] [INSPIRE].Google Scholar
  31. [31]
    J.A. Minahan and U. Naseer, One-loop tests of supersymmetric gauge theories on spheres, JHEP 07 (2017) 074 [arXiv:1703.07435] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  32. [32]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S 2 × S 3, Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    D. Martelli and J. Sparks, Notes on toric Sasaki-Einstein seven-manifolds and AdS 4 /CF T 3, JHEP 11 (2008) 016 [arXiv:0808.0904] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    D. Fabbri et al., 3 − D superconformal theories from Sasakian seven manifolds: New nontrivial evidences for AdS 4 /CF T 3, Nucl. Phys. B 577 (2000) 547 [hep-th/9907219] [INSPIRE].
  35. [35]
    J. Winding, Multiple elliptic gamma functions associated to cones, arXiv:1609.02384 [INSPIRE].
  36. [36]
    H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05 (2013) 144 [arXiv:1206.6339] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  37. [37]
    G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative Topological Strings, arXiv:1210.5909 [INSPIRE].
  38. [38]
    H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes, arXiv:1211.0144 [INSPIRE].
  39. [39]
    A. Narukawa, The modular properties and the integral representations of the multiple elliptic gamma functions, Adv. Math. 189 (2004) 247.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    N.A. Nekrasov, Instanton partition functions and M-theory, in Proceedings, 15th International Seminar on High Energy Physics (Quarks 2008), Sergiev Posad Russia (2008), http://quarks.inr.ac.ru/2008/proceedings/p5_FT/nekrasov.pdf.
  41. [41]
    J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008] [INSPIRE].
  42. [42]
    C.P. Boyer and K. Galicki, 3-Sasakian manifolds, Surveys Diff. Geom. 7 (1999) 123 [hep-th/9810250] [INSPIRE].MathSciNetMATHGoogle Scholar
  43. [43]
    J. Qiu, L. Tizzano, J. Winding and M. Zabzine, Modular properties of full 5D SYM partition function, JHEP 03 (2016) 193 [arXiv:1511.06304] [INSPIRE].
  44. [44]
    J. Kallen, J.A. Minahan, A. Nedelin and M. Zabzine, N 3 -behavior from 5D Yang-Mills theory, JHEP 10 (2012) 184 [arXiv:1207.3763] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  45. [45]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  46. [46]
    A. Losev, G.W. Moore and S.L. Shatashvili, M & m’s, Nucl. Phys. B 522 (1998) 105 [hep-th/9707250] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Konstantina Polydorou
    • 1
  • Andreas Rocén
    • 2
  • Maxim Zabzine
    • 1
  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  2. 2.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations