Advertisement

Journal of High Energy Physics

, 2017:74 | Cite as

Collectivity from interference

  • Boris Blok
  • Christian D. Jäkel
  • Mark Strikman
  • Urs Achim WiedemannEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

In hadronic collisions, interference between different production channels affects momentum distributions of multi-particle final states. As this QCD interference does not depend on the strong coupling constant α s , it is part of the no-interaction baseline that needs to be controlled prior to searching for other manifestations of collective dynamics, e.g., in the analysis of azimuthal anisostropy coefficients v n at the LHC. Here, we introduce a model that is based on the QCD theory of multi-parton interactions and that allows one to study interference effects in the production of m particles in hadronic collisions with N parton-parton interactions (“sources”). In an expansion in powers of 1/(N c 2  − 1) and to leading order in the number of sources N , we calculate interference effects in the m-particle spectra and we determine from them the second and fourth order cumulant momentum anisotropies v n {2} and v n {4}. Without invoking any azimuthal asymmetry and any density dependent non-linear dynamics in the incoming state, and without invoking any interaction in the final state, we find that QCD interference alone can give rise to values for v n {2} and v n {4}, n even, that persist unattenuated for increasing number of sources, that may increase with increasing multiplicity and that agree with measurements in proton-proton (pp) collisions in terms of the order of magnitude of the signal and the approximate shape of the transverse momentum dependence. We further find that the non-abelian features of QCD interference can give rise to odd harmonic anisotropies. These findings indicate that the no-interaction baseline including QCD interference effects can make a sizeable if not dominant contribution to the measured v n coefficients in pp collisions. Prospects for analyzing QCD interference contributions further and their possible relevance for proton-nucleus and nucleus-nucleus collisions are discussed shortly.

Keywords

Heavy Ion Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Sjöstrand, The development of MPI modelling in PYTHIA, arXiv:1706.02166 [INSPIRE].
  2. [2]
    S. Gieseke, M.H. Seymour and A. Siodmok, A model of non-perturbative gluon emission in an initial state parton shower, JHEP 06 (2008) 001 [arXiv:0712.1199] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Gieseke, P. Kirchgaeßer and F. Loshaj, Soft interactions in HERWIG, arXiv:1703.10808 [INSPIRE].
  4. [4]
    SHERPA collaboration, H. Schulz, SHRiMPS — status of soft interactions in SHERPA, in Proceedings of the Seventh International Workshop on Multiple Partonic Interactions at the Large Hadron Collider, http://indico.ictp.it/event/a14280/, Trieste Italy, 23-27 November 2015 [INSPIRE].
  5. [5]
    CMS collaboration, Jet momentum dependence of jet quenching in PbPb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, Phys. Lett. B 712 (2012) 176 [arXiv:1202.5022] [INSPIRE].
  6. [6]
    ATLAS collaboration, Measurements of the nuclear modification factor for jets in Pb+Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ATLAS detector, Phys. Rev. Lett. 114 (2015) 072302 [arXiv:1411.2357] [INSPIRE].
  7. [7]
    ALICE collaboration, Measurement of charged jet suppression in Pb-Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, JHEP 03 (2014) 013 [arXiv:1311.0633] [INSPIRE].
  8. [8]
    A. Kurkela, Initial state of heavy-ion collisions: isotropization and thermalization, Nucl. Phys. A 956 (2016) 136 [arXiv:1601.03283] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    ALICE collaboration, Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions, Nature Phys. 13 (2017) 535 [arXiv:1606.07424] [INSPIRE].
  11. [11]
    CMS collaboration, Evidence for collective multiparticle correlations in p-Pb collisions, Phys. Rev. Lett. 115 (2015) 012301 [arXiv:1502.05382] [INSPIRE].
  12. [12]
    CMS collaboration, Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765 (2017)193 [arXiv:1606.06198] [INSPIRE].
  13. [13]
    ATLAS collaboration, Measurement of multi-particle azimuthal correlations in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector, Eur. Phys. J. C 77 (2017) 428 [arXiv:1705.04176] [INSPIRE].
  14. [14]
    ATLAS collaboration, Observation of long-range elliptic azimuthal anisotropies in \( \sqrt{s}=13 \) and 2.76 TeV pp collisions with the ATLAS detector, Phys. Rev. Lett. 116 (2016) 172301 [arXiv:1509.04776] [INSPIRE].
  15. [15]
    N. Fischer and T. Sjöstrand, Thermodynamical string fragmentation, JHEP 01 (2017) 140 [arXiv:1610.09818] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    P. Bozek, Collective flow in p-Pb and d-Pd collisions at TeV energies, Phys. Rev. C 85 (2012) 014911 [arXiv:1112.0915] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Bzdak, B. Schenke, P. Tribedy and R. Venugopalan, Initial state geometry and the role of hydrodynamics in proton-proton, proton-nucleus and deuteron-nucleus collisions, Phys. Rev. C 87 (2013) 064906 [arXiv:1304.3403] [INSPIRE].ADSGoogle Scholar
  18. [18]
    L. He, T. Edmonds, Z.-W. Lin, F. Liu, D. Molnar and F. Wang, Anisotropic parton escape is the dominant source of azimuthal anisotropy in transport models, Phys. Lett. B 753 (2016) 506 [arXiv:1502.05572] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    ALICE collaboration, Measurement of charged jet production cross sections and nuclear modification in p-Pb collisions at \( \sqrt{s_{N\;N}}=5.02 \) TeV, Phys. Lett. B 749 (2015) 68 [arXiv:1503.00681] [INSPIRE].
  20. [20]
    ATLAS collaboration, Centrality and rapidity dependence of inclusive jet production in \( \sqrt{s_{N\;N}}=5.02 \) TeV proton-lead collisions with the ATLAS detector, Phys. Lett. B 748 (2015) 392 [arXiv:1412.4092] [INSPIRE].
  21. [21]
    CMS collaboration, Measurement of inclusive jet production and nuclear modifications in pPb collisions at \( \sqrt{s_{N\;N}}=5.02 \) TeV, Eur. Phys. J. C 76 (2016) 372 [arXiv:1601.02001] [INSPIRE].
  22. [22]
    N. Borghini, P.M. Dinh and J.-Y. Ollitrault, A new method for measuring azimuthal distributions in nucleus-nucleus collisions, Phys. Rev. C 63 (2001) 054906 [nucl-th/0007063] [INSPIRE].
  23. [23]
    N. Borghini, P.M. Dinh and J.-Y. Ollitrault, Flow analysis from multiparticle azimuthal correlations, Phys. Rev. C 64 (2001) 054901 [nucl-th/0105040] [INSPIRE].
  24. [24]
    A. Bilandzic, R. Snellings and S. Voloshin, Flow analysis with cumulants: direct calculations, Phys. Rev. C 83 (2011) 044913 [arXiv:1010.0233] [INSPIRE].ADSGoogle Scholar
  25. [25]
    T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and M. Lublinsky, Bose enhancement and the ridge, Phys. Lett. B 751 (2015) 448 [arXiv:1503.07126] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and M. Lublinsky, Hanbury-Brown-Twiss measurements at large rapidity separations, or can we measure the proton radius in p-A collisions?, Phys. Lett. B 752 (2016) 113 [arXiv:1509.03223] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    T. Lappi, B. Schenke, S. Schlichting and R. Venugopalan, Tracing the origin of azimuthal gluon correlations in the color glass condensate, JHEP 01 (2016) 061 [arXiv:1509.03499] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Dumitru, L. McLerran and V. Skokov, Azimuthal asymmetries and the emergence of “collectivity” from multi-particle correlations in high-energy pA collisions, Phys. Lett. B 743 (2015) 134 [arXiv:1410.4844] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Kovner, M. Lublinsky and V. Skokov, Exploring correlations in the CGC wave function: odd azimuthal anisotropy, Phys. Rev. D 96 (2017) 016010 [arXiv:1612.07790] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T. Lappi and R. Venugopalan, The ridge in proton-proton collisions at the LHC, Phys. Lett. B 697 (2011) 21 [arXiv:1009.5295] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    E. Levin and A.H. Rezaeian, The ridge from the BFKL evolution and beyond, Phys. Rev. D 84 (2011) 034031 [arXiv:1105.3275] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Kovner and M. Lublinsky, Angular correlations in gluon production at high energy, Phys. Rev. D 83 (2011) 034017 [arXiv:1012.3398] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Kovner and M. Lublinsky, On angular correlations and high energy evolution, Phys. Rev. D 84 (2011) 094011 [arXiv:1109.0347] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Y.V. Kovchegov and D.E. Wertepny, Long-range rapidity correlations in heavy-light ion collisions, Nucl. Phys. A 906 (2013) 50 [arXiv:1212.1195] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Dumitru and A.V. Giannini, Initial state angular asymmetries in high energy p+A collisions: spontaneous breaking of rotational symmetry by a color electric field and C-odd fluctuations, Nucl. Phys. A 933 (2015) 212 [arXiv:1406.5781] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Dusling and R. Venugopalan, Azimuthal collimation of long range rapidity correlations by strong color fields in high multiplicity hadron-hadron collisions, Phys. Rev. Lett. 108 (2012) 262001 [arXiv:1201.2658] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E. Gotsman, E. Levin and U. Maor, CGC/saturation approach for high energy soft interactions: ‘soft’ pomeron structure and v n in hadron and nucleus collisions from Bose-Einstein correlations, Eur. Phys. J. C 76 (2016) 607 [arXiv:1607.00594] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Gotsman, E. Levin and U. Maor, Bose-Einstein correlations and v 2n and v 2n−1 in hadron and nucleus collisions, Phys. Rev. D 95 (2017) 034005 [arXiv:1604.04461] [INSPIRE].ADSGoogle Scholar
  39. [39]
    L. McLerran and V. Skokov, Finite numbers of sources, particle correlations and the color glass condensate, Nucl. Phys. A 947 (2016) 142 [arXiv:1510.08072] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G.P. Salam, Soft emissions and the equivalence of BFKL and CCFM final states, JHEP 03 (1999) 009 [hep-ph/9902324] [INSPIRE].
  41. [41]
    M. Yu. Azarkin, I.M. Dremin and M. Strikman, Jets in multiparticle production in and beyond geometry of proton-proton collisions at the LHC, Phys. Lett. B 735 (2014) 244 [arXiv:1401.1973] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    N. Paver and D. Treleani, Multi-quark scattering and large p T jet production in hadronic collisions, Nuovo Cim. A 70 (1982) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Mekhfi, Multiparton processes: an application to double Drell-Yan, Phys. Rev. D 32 (1985) 2371 [INSPIRE].ADSGoogle Scholar
  44. [44]
    J.R. Gaunt and W.J. Stirling, Double parton distributions incorporating perturbative QCD evolution and momentum and quark number sum rules, JHEP 03 (2010) 005 [arXiv:0910.4347] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    J.R. Gaunt, C.-H. Kom, A. Kulesza and W.J. Stirling, Same-sign W pair production as a probe of double parton scattering at the LHC, Eur. Phys. J. C 69 (2010) 53 [arXiv:1003.3953] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B. Blok, Yu. Dokshitzer, L. Frankfurt and M. Strikman, The four jet production at LHC and Tevatron in QCD, Phys. Rev. D 83 (2011) 071501 [arXiv:1009.2714] [INSPIRE].ADSGoogle Scholar
  47. [47]
    J.R. Gaunt and W.J. Stirling, Double parton scattering singularity in one-loop integrals, JHEP 06 (2011) 048 [arXiv:1103.1888] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    B. Blok, Yu. Dokshitser, L. Frankfurt and M. Strikman, pQCD physics of multiparton interactions, Eur. Phys. J. C 72 (2012) 1963 [arXiv:1106.5533] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Diehl, D. Ostermeier and A. Schafer, Elements of a theory for multiparton interactions in QCD, JHEP 03 (2012) 089 [Erratum ibid. 03 (2016) 001] [arXiv:1111.0910] [INSPIRE].
  50. [50]
    B. Blok, Yu. Dokshitzer, L. Frankfurt and M. Strikman, Perturbative QCD correlations in multi-parton collisions, Eur. Phys. J. C 74 (2014) 2926 [arXiv:1306.3763] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.R. Gaunt, R. Maciula and A. Szczurek, Conventional versus single-ladder-splitting contributions to double parton scattering production of two quarkonia, two Higgs bosons and \( c\overline{c}c\overline{c} \), Phys. Rev. D 90 (2014) 054017 [arXiv:1407.5821] [INSPIRE].ADSGoogle Scholar
  52. [52]
    K. Golec-Biernat and E. Lewandowska, Electroweak boson production in double parton scattering, Phys. Rev. D 90 (2014) 094032 [arXiv:1407.4038] [INSPIRE].ADSGoogle Scholar
  53. [53]
    Proceedings of the Seventh International Workshop on Multiple Partonic Interactions at the Large Hadron Collider, http://indico.ictp.it/event/a14280/, Trieste Italy, 23-27 November 2015.
  54. [54]
    L. Frankfurt and M. Strikman, Two gluon form-factor of the nucleon and J/ψ photoproduction, Phys. Rev. D 66 (2002) 031502 [hep-ph/0205223] [INSPIRE].
  55. [55]
    L. Frankfurt, M. Strikman and C. Weiss, Dijet production as a centrality trigger for pp collisions at CERN LHC, Phys. Rev. D 69 (2004) 114010 [hep-ph/0311231] [INSPIRE].
  56. [56]
    L. Frankfurt, M. Strikman and C. Weiss, Transverse nucleon structure and diagnostics of hard parton-parton processes at LHC, Phys. Rev. D 83 (2011) 054012 [arXiv:1009.2559] [INSPIRE].ADSGoogle Scholar
  57. [57]
    J. Kuechler, Measurements of particle production, underlying event and double parton interactions at the LHC, PoS(LHCP2016)133 [INSPIRE].
  58. [58]
    ATLAS collaboration, Study of hard double-parton scattering in four-jet events in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS experiment, JHEP 11 (2016) 110 [arXiv:1608.01857] [INSPIRE].
  59. [59]
    P. Gunnellini, Study of high p T particle production from double parton scatterings at the CMS experiment, in Proceedings of the Seventh International Workshop on Multiple Partonic Interactions at the Large Hadron Collider, http://indico.ictp.it/event/a14280/, Trieste Italy, 23-27 November 2015 [INSPIRE].
  60. [60]
    CDF collaboration, F. Abe et al., Measurement of double parton scattering in \( \overline{p}p \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 79 (1997) 584 [INSPIRE].
  61. [61]
    B. Blok and M. Strikman, Interplay of soft and perturbative correlations in multiparton interactions at central rapidities, Phys. Lett. B 772 (2017) 219 [arXiv:1611.03649] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    CMS collaboration, Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions, Phys. Rev. C 92 (2015) 034911 [arXiv:1503.01692] [INSPIRE].
  63. [63]
    C. Shen, Z. Qiu and U. Heinz, Shape and flow fluctuations in ultracentral Pb+Pb collisions at the energies available at the CERN Large Hadron Collider, Phys. Rev. C 92 (2015) 014901 [arXiv:1502.04636] [INSPIRE].ADSGoogle Scholar
  64. [64]
    F.G. Gardim, F. Grassi, M. Luzum and J.-Y. Ollitrault, Breaking of factorization of two-particle correlations in hydrodynamics, Phys. Rev. C 87 (2013) 031901 [arXiv:1211.0989] [INSPIRE].ADSGoogle Scholar
  65. [65]
    L. Yan and J.-Y. Ollitrault, ν 4 , ν 5 , ν 6 , ν 7 : nonlinear hydrodynamic response versus LHC data, Phys. Lett. B 744 (2015) 82 [arXiv:1502.02502] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    D. Teaney and L. Yan, Non linearities in the harmonic spectrum of heavy ion collisions with ideal and viscous hydrodynamics, Phys. Rev. C 86 (2012) 044908 [arXiv:1206.1905] [INSPIRE].ADSGoogle Scholar
  67. [67]
    S. Floerchinger, U.A. Wiedemann, A. Beraudo, L. Del Zanna, G. Inghirami and V. Rolando, How (non-)linear is the hydrodynamics of heavy ion collisions?, Phys. Lett. B 735 (2014) 305 [arXiv:1312.5482] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    N. Borghini and J.-Y. Ollitrault, Momentum spectra, anisotropic flow and ideal fluids, Phys. Lett. B 642 (2006) 227 [nucl-th/0506045] [INSPIRE].
  69. [69]
    M. Gyulassy, P. Levai, I. Vitev and T.S. Biro, Non-Abelian bremsstrahlung and azimuthal asymmetries in high energy p+A reactions, Phys. Rev. D 90 (2014) 054025 [arXiv:1405.7825] [INSPIRE].ADSGoogle Scholar
  70. [70]
    C. Bierlich, G. Gustafson, L. Lönnblad and A. Tarasov, Effects of overlapping strings in pp collisions, JHEP 03 (2015) 148 [arXiv:1412.6259] [INSPIRE].CrossRefGoogle Scholar
  71. [71]
    C. Bierlich, G. Gustafson and L. Lönnblad, A shoving model for collectivity in hadronic collisions, arXiv:1612.05132 [INSPIRE].
  72. [72]
    C. Bierlich, G. Gustafson and L. Lönnblad, Collectivity without plasma in hadronic collisions, arXiv:1710.09725 [INSPIRE].
  73. [73]
    M.A. Braun, C. Pajares and V.V. Vechernin, Anisotropic flows from colour strings: Monte-Carlo simulations, Nucl. Phys. A 906 (2013) 14 [arXiv:1204.5829] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    V.A. Abramovsky and O.V. Kancheli, Distribution of secondary hadron multiplicity (in Russian), Pisma Zh. Eksp. Teor. Fiz. 31 (1980) 566 [INSPIRE].Google Scholar
  75. [75]
    V.A. Abramovsky, E.V. Gedalin, E.G. Gurvich and O.V. Kancheli, Long range azimuthal correlations in multiple production processes at high-energies, JETP Lett. 47 (1988) 337 [Pisma Zh. Eksp. Teor. Fiz. 47 (1988) 281] [INSPIRE].

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Boris Blok
    • 1
  • Christian D. Jäkel
    • 2
  • Mark Strikman
    • 3
  • Urs Achim Wiedemann
    • 4
    Email author
  1. 1.Department of PhysicsTechnion — Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Applied MathematicsUniversity of São Paulo (USP)São PauloBrazil
  3. 3.Department of PhysicsPenn State UniversityUniversity ParkU.S.A.
  4. 4.Theoretical Physics DepartmentCERNGenève 23Switzerland

Personalised recommendations