Advertisement

Journal of High Energy Physics

, 2017:73 | Cite as

Dissimilarities of reduced density matrices and eigenstate thermalization hypothesis

  • Song He
  • Feng-Li Lin
  • Jia-ju ZhangEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We calculate various quantities that characterize the dissimilarity of reduced density matrices for a short interval of length ℓ in a two-dimensional (2D) large central charge conformal field theory (CFT). These quantities include the Rényi entropy, entanglement entropy, relative entropy, Jensen-Shannon divergence, as well as the Schatten 2-norm and 4-norm. We adopt the method of operator product expansion of twist operators, and calculate the short interval expansion of these quantities up to order of ℓ9 for the contributions from the vacuum conformal family. The formal forms of these dissimilarity measures and the derived Fisher information metric from contributions of general operators are also given. As an application of the results, we use these dissimilarity measures to compare the excited and thermal states, and examine the eigenstate thermalization hypothesis (ETH) by showing how they behave in high temperature limit. This would help to understand how ETH in 2D CFT can be defined more precisely. We discuss the possibility that all the dissimilarity measures considered here vanish when comparing the reduced density matrices of an excited state and a generalized Gibbs ensemble thermal state. We also discuss ETH for a microcanonical ensemble thermal state in a 2D large central charge CFT, and find that it is approximately satisfied for a small subsystem and violated for a large subsystem.

Keywords

AdS-CFT Correspondence Conformal Field Theory Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

13130_2017_7270_MOESM1_ESM.nb (559 kb)
ESM 1 (NB 559 kb)

References

  1. [1]
    J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.CrossRefADSGoogle Scholar
  2. [2]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888.ADSGoogle Scholar
  3. [3]
    N. Lashkari, A. Dymarsky and H. Liu, Eigenstate Thermalization Hypothesis in Conformal Field Theory, arXiv:1610.00302 [INSPIRE].
  4. [4]
    A. Dymarsky, N. Lashkari and H. Liu, Subsystem ETH, arXiv:1611.08764 [INSPIRE].
  5. [5]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum Entanglement of Localized Excited States at Finite Temperature, JHEP 01 (2015) 102 [arXiv:1410.2287] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    F.-L. Lin, H. Wang and J.-j. Zhang, Thermality and excited state Rényi entropy in two-dimensional CFT, JHEP 11 (2016) 116 [arXiv:1610.01362] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    S. He, F.-L. Lin and J.-j. Zhang, Subsystem eigenstate thermalization hypothesis for entanglement entropy in CFT, JHEP 08 (2017) 126 [arXiv:1703.08724] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  11. [11]
    P. Basu, D. Das, S. Datta and S. Pal, Thermality of eigenstates in conformal field theories, Phys. Rev. E 96 (2017) 022149 [arXiv:1705.03001] [INSPIRE].ADSGoogle Scholar
  12. [12]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].zbMATHGoogle Scholar
  13. [13]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. 0911 (2009) P11001 [arXiv:0905.2069] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Headrick, Entanglement Rényi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].MathSciNetGoogle Scholar
  16. [16]
    B. Chen and J.-J. Zhang, On short interval expansion of Rényi entropy, JHEP 11 (2013) 164 [arXiv:1309.5453] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    B. Chen, J.-B. Wu and J.-j. Zhang, Short interval expansion of Rényi entropy on torus, JHEP 08 (2016) 130 [arXiv:1606.05444] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    E. Iyoda, K. Kaneko and T. Sagawa, Fluctuation theorem for many-body pure quantum states, Phys. Rev. Lett. 119 (2017) 100601 [arXiv:1603.07857].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    H. Tasaki, On the local equivalence between the canonical and the microcanonical distributions for quantum spin systems, arXiv:1609.06983.
  20. [20]
    M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a Completely Integrable Many-Body Quantum System: An AbInitio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons, Phys. Rev. Lett. 98 (2007) 050405 [cond-mat/0604476].
  21. [21]
    G. Mandal, R. Sinha and N. Sorokhaibam, Thermalization with chemical potentials and higher spin black holes, JHEP 08 (2015) 013 [arXiv:1501.04580] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    J. Cardy, Quantum Quenches to a Critical Point in One Dimension: some further results, J. Stat. Mech. 1602 (2016) 023103 [arXiv:1507.07266] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Mandal, S. Paranjape and N. Sorokhaibam, Thermalization in 2D critical quench and UV/IR mixing, arXiv:1512.02187 [INSPIRE].
  24. [24]
    L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat. Mech. 6 (2016) 064007 [arXiv:1604.03990].MathSciNetCrossRefGoogle Scholar
  25. [25]
    J. de Boer and D. Engelhardt, Remarks on thermalization in 2D CFT, Phys. Rev. D 94 (2016) 126019 [arXiv:1604.05327] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B. Chen, J. Long and J.-j. Zhang, Holographic Rényi entropy for CFT with W symmetry, JHEP 04 (2014) 041 [arXiv:1312.5510] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    M.R. Gaberdiel, C.A. Keller and R. Volpato, Genus Two Partition Functions of Chiral Conformal Field Theories, Commun. Num. Theor. Phys. 4 (2010) 295 [arXiv:1002.3371] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J. Cardy, Thermalization and Revivals after a Quantum Quench in Conformal Field Theory, Phys. Rev. Lett. 112 (2014) 220401 [arXiv:1403.3040] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    M. Headrick, A. Maloney, E. Perlmutter and I.G. Zadeh, Rényi entropies, the analytic bootstrap and 3D quantum gravity at higher genus, JHEP 07 (2015) 059 [arXiv:1503.07111] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    A. Belin, C.A. Keller and I.G. Zadeh, Genus two partition functions and Rényi entropies of large c conformal field theories, J. Phys. A 50 (2017) 435401 [arXiv:1704.08250] [INSPIRE].zbMATHADSGoogle Scholar
  31. [31]
    J. Cardy, A. Maloney and H. Maxfield, A new handle on three-point coefficients: OPE asymptotics from genus two modular invariance, JHEP 10 (2017) 136 [arXiv:1705.05855] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  32. [32]
    C.A. Keller, G. Mathys and I.G. Zadeh, Bootstrapping Chiral CFTs at Genus Two, arXiv:1705.05862 [INSPIRE].
  33. [33]
    M. Cho, S. Collier and X. Yin, Genus Two Modular Bootstrap, arXiv:1705.05865 [INSPIRE].
  34. [34]
    M. Beccaria and G. Macorini, On the next-to-leading holographic entanglement entropy in AdS 3/CFT 2, JHEP 04 (2014) 045 [arXiv:1402.0659] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    Z. Li and J.-j. Zhang, On one-loop entanglement entropy of two short intervals from OPE of twist operators, JHEP 05 (2016) 130 [arXiv:1604.02779] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  36. [36]
    S. He, T. Numasawa, T. Takayanagi and K. Watanabe, Quantum dimension as entanglement entropy in two dimensional conformal field theories, Phys. Rev. D 90 (2014) 041701 [arXiv:1403.0702] [INSPIRE].ADSGoogle Scholar
  37. [37]
    W.-Z. Guo and S. He, Rényi entropy of locally excited states with thermal and boundary effect in 2D CFTs, JHEP 04 (2015) 099 [arXiv:1501.00757] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    B. Chen, W.-Z. Guo, S. He and J.-q. Wu, Entanglement Entropy for Descendent Local Operators in 2D CFTs, JHEP 10 (2015) 173 [arXiv:1507.01157] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  39. [39]
    J. Cardy and C.P. Herzog, Universal Thermal Corrections to Single Interval Entanglement Entropy for Two Dimensional Conformal Field Theories, Phys. Rev. Lett. 112 (2014) 171603 [arXiv:1403.0578] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    B. Chen and J.-q. Wu, Single interval Rényi entropy at low temperature, JHEP 08 (2014) 032 [arXiv:1405.6254] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    B. Chen, J.-q. Wu and Z.-c. Zheng, Holographic Rényi entropy of single interval on Torus: With W symmetry, Phys. Rev. D 92 (2015) 066002 [arXiv:1507.00183] [INSPIRE].ADSGoogle Scholar
  42. [42]
    K. Ohmori and Y. Tachikawa, Physics at the entangling surface, J. Stat. Mech. 1504 (2015) P04010 [arXiv:1406.4167] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  44. [44]
    J.R. Garrison and T. Grover, Does a single eigenstate encode the full Hamiltonian?, arXiv:1503.00729 [INSPIRE].
  45. [45]
    T.-C. Lu and T. Grover, Rényi Entropy of Chaotic Eigenstates, arXiv:1709.08784 [INSPIRE].
  46. [46]
    N. Lashkari, A. Dymarsky and H. Liu, Universality of Quantum Information in Chaotic CFTs, arXiv:1710.10458 [INSPIRE].
  47. [47]
    R. Sasaki and I. Yamanaka, Virasoro Algebra, Vertex Operators, Quantum Sine-Gordon and Solvable Quantum Field Theories, Adv. Stud. Pure Math. 16 (1988) 271.MathSciNetzbMATHGoogle Scholar
  48. [48]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  49. [49]
    S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Higher spin entanglement entropy from CFT, JHEP 06 (2014) 096 [arXiv:1402.0007] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Universal correction to higher spin entanglement entropy, Phys. Rev. D 90 (2014) 041903 [arXiv:1405.0015] [INSPIRE].ADSGoogle Scholar
  51. [51]
    S. Datta, J.R. David and S.P. Kumar, Conformal perturbation theory and higher spin entanglement entropy on the torus, JHEP 04 (2015) 041 [arXiv:1412.3946] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    B. Chen and J.-q. Wu, Universal relation between thermal entropy and entanglement entropy in conformal field theories, Phys. Rev. D 91 (2015) 086012 [arXiv:1412.0761] [INSPIRE].ADSGoogle Scholar
  53. [53]
    H. Araki and E.H. Lieb, Entropy inequalities, Commun. Math. Phys. 18 (1970) 160 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  54. [54]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  55. [55]
    M. Headrick and T. Takayanagi, A Holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].MathSciNetADSGoogle Scholar
  56. [56]
    T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as Entanglement Entropy via AdS 2/CFT 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].Google Scholar
  57. [57]
    D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative Entropy and Holography, JHEP 08 (2013) 060 [arXiv:1305.3182] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  58. [58]
    V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux, JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    B. Chen, Z. Li and J.-j. Zhang, Corrections to holographic entanglement plateau, JHEP 09 (2017) 151 [arXiv:1707.07354] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  61. [61]
    G. Sárosi and T. Ugajin, Relative entropy of excited states in two dimensional conformal field theories, JHEP 07 (2016) 114 [arXiv:1603.03057] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  62. [62]
    G. Sárosi and T. Ugajin, Relative entropy of excited states in conformal field theories of arbitrary dimensions, JHEP 02 (2017) 060 [arXiv:1611.02959] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  64. [64]
    G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and Entanglement Entropy of Excited States, JHEP 12 (2013) 020 [arXiv:1305.3291] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    N. Lashkari, Modular Hamiltonian for Excited States in Conformal Field Theory, Phys. Rev. Lett. 117 (2016) 041601 [arXiv:1508.03506] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  66. [66]
    G. Sárosi and T. Ugajin, Modular Hamiltonians of excited states, OPE blocks and emergent bulk fields, arXiv:1705.01486 [INSPIRE].
  67. [67]
    P. Sánchez-Moreno, A. Zarzo and J.S. Dehesa, Jensen divergence based on Fisher’s information, J. Phys. A 45 (2012) 125305 [arXiv:1012.5041].MathSciNetzbMATHADSGoogle Scholar
  68. [68]
    G.E. Crooks, Measuring Thermodynamic Length, Phys. Rev. Lett. 99 (2007) 100602 [arXiv:0706.0559].CrossRefADSGoogle Scholar
  69. [69]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer, New York, U.S.A. (1997).CrossRefzbMATHGoogle Scholar
  70. [70]
    R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory, Lect. Notes Phys. 779 (2009) 1.MathSciNetCrossRefzbMATHADSGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Max Planck Institute for Gravitational Physics (Albert Einstein Institute)GolmGermany
  2. 2.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan
  4. 4.Dipartimento di FisicaUniversità degli Studi di Milano-BicoccaMilanoItaly
  5. 5.INFN, Sezione di Milano-BicoccaMilanoItaly

Personalised recommendations