Advertisement

Journal of High Energy Physics

, 2017:71 | Cite as

Kink dynamics in a parametric ϕ6 system: a model with controllably many internal modes

  • A. Demirkaya
  • R. Decker
  • P. G. Kevrekidis
  • I. C. Christov
  • A. Saxena
Open Access
Regular Article - Theoretical Physics

Abstract

We explore a variant of the ϕ6 model originally proposed in Phys. Rev. D 12 (1975) 1606 as a prototypical, so-called, “bag” model in which domain walls play the role of quarks within hadrons. We examine the steady state of the model, namely an apparent bound state of two kink structures. We explore its linearization, and we find that, as a function of a parameter controlling the curvature of the potential, an effectively arbitrary number of internal modes may arise in the point spectrum of the linearization about the domain wall profile. We explore some of the key characteristics of kink-antikink collisions, such as the critical velocity and the multi-bounce windows, and how they depend on the principal parameter of the model. We find that the critical velocity exhibits a non-monotonic dependence on the parameter controlling the curvature of the potential. For the multi-bounce windows, we find that their range and complexity decrease as the relevant parameter decreases (and as the number of internal modes in the model increases). We use a modified collective coordinates method [in the spirit of recent works such as Phys. Rev. D 94 (2016) 085008] in order to capture the relevant phenomenology in a semi-analytical manner.

Keywords

Nonperturbative Effects Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T.I. Belova and A.E. Kudryavtsev, Solitons and their interactions in classical field theory, Phys. Usp. 40 (1997) 359.ADSCrossRefGoogle Scholar
  2. [2]
    P. Anninos, S. Oliveira and R.A. Matzner, Fractal structure in the scalar λ(ϕ 2 − 1)2 theory, Phys. Rev. D 44 (1991) 1147 [INSPIRE].ADSGoogle Scholar
  3. [3]
    A. Vilenkin and E.P.S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge University Press, Cambridge U.K. (2000).zbMATHGoogle Scholar
  4. [4]
    Y.M. Gufan, Structural Phase Transitions (in Russian), Nauka, Moscow Russia (1982).Google Scholar
  5. [5]
    S.N. Behera and A. Khare, Classical ϕ 6 -field theory in (1 + 1) dimensions. A model for structural phase transitions, Pramana 15 (1980) 245.Google Scholar
  6. [6]
    T. Vachaspati, Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons, Cambridge University Press, Cambridge U.K. (2006).CrossRefzbMATHGoogle Scholar
  7. [7]
    N. Manton and P. Sutcliffe, Topological Solitons, Cambridge University Press, Cambridge U.K. (2004).CrossRefzbMATHGoogle Scholar
  8. [8]
    D.K. Campbell, J.F. Schonfeld and C.A. Wingate, Resonance structure in kink-antikink interactions in ϕ 4 theory, Physica D 9 (1983) 1.ADSGoogle Scholar
  9. [9]
    W.W. Cao and L.E. Cross, Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition, Phys. Rev. B 44 (1991) 5.ADSCrossRefGoogle Scholar
  10. [10]
    A. Planes, E. Obradó, A. Gonzàles-Comas and L. Mañosa, Premartensitic Transition Driven by Magnetoelastic Interaction in bcc Ferromagnetic Ni 2 MnGa, Phys. Rev. Lett. 79 (1997) 3926.ADSCrossRefGoogle Scholar
  11. [11]
    S. Chandrasekhar, Liquid Crystals, Cambridge University Press, Cambridge U.K. (1992).CrossRefGoogle Scholar
  12. [12]
    E.W. Kolb and M.S. Turner, The Early Universe, Addison-Wesley, Reading U.S.A. 1990).zbMATHGoogle Scholar
  13. [13]
    V.G. Makhankov, Soliton Phenomenology, Kluwer Academic, Boston U.S.A. (1990).CrossRefGoogle Scholar
  14. [14]
    D.K. Campbell and M. Peyrard, Solitary wave collisions revisited, Physica D 18 (1986) 47 [Erratum ibid. 19 (1986) 165].Google Scholar
  15. [15]
    V.A. Gani, A.E. Kudryavtsev and M.A. Lizunova, Kink interactions in the (1 + 1)-dimensional ϕ 6 model, Phys. Rev. D 89 (2014) 125009 [arXiv:1402.5903] [INSPIRE].ADSGoogle Scholar
  16. [16]
    F.C. Simas, A.R. Gomes, K.Z. Nobrega and J.C. R.E. Oliveira, Suppression of two-bounce windows in kink-antikink collisions, JHEP 09 (2016) 104 [arXiv:1605.05344] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A.M. Marjaneh, V.A. Gani, D. Saadatmand, S.V. Dmitriev and K. Javidan, Multi-kink collisions in the ϕ 6 model, JHEP 07 (2017) 028 [arXiv:1704.08353] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R.H. Goodman and R. Haberman, Kink-Antikink Collisions in the ϕ 4 Equation: The n-Bounce Resonance and the Separatrix Map, SIAM J. Appl. Dyn. Syst. 4 (2005) 1195.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    P. Dorey, K. Mersh, T. Romanczukiewicz and Y. Shnir, Kink-antikink collisions in the ϕ 6 model, Phys. Rev. Lett. 107 (2011) 091602 [arXiv:1101.5951] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    H. Weigel, Kink-Antikink Scattering in ϕ 4 and ϕ 6 Models, J. Phys. Conf. Ser. 482 (2014) 012045 [arXiv:1309.6607] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    I. Takyi and H. Weigel, Collective Coordinates in One-Dimensional Soliton Models Revisited, Phys. Rev. D 94 (2016) 085008 [arXiv:1609.06833] [INSPIRE].ADSGoogle Scholar
  22. [22]
    T. Sugiyama, Kink-antikink collisions in the two-dimensional ϕ 4 model, Prog. Theor. Phys. 61 (1979) 1550 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    V.A. Gani, V. Lensky and M.A. Lizunova, Kink excitation spectra in the (1 + 1)-dimensional ϕ 8 model, JHEP 08 (2015) 147 [arXiv:1506.02313] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Khare, I.C. Christov and A. Saxena, Successive phase transitions and kink solutions in ϕ 8 , ϕ 10 and ϕ 12 field theories, Phys. Rev. E 90 (2014) 023208 [arXiv:1402.6766] [INSPIRE].ADSGoogle Scholar
  25. [25]
    E. Belendryasova and V.A. Gani, Scattering of the ϕ 8 kinks with power-law asymptotics, arXiv:1708.00403 [INSPIRE].
  26. [26]
    A. Alonso-Izquierdo and J. Mateos Guilarte, One-loop kink mass shifts: A Computational approach, Nucl. Phys. B 852 (2011) 696 [arXiv:1107.2216] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    H. Weigel, Vacuum Polarization Energy for General Backgrounds in One Space Dimension, Phys. Lett. B 766 (2017) 65 [arXiv:1612.08641] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M.A. Lohe, Soliton Structures in P (ϕ) in Two-dimensions, Phys. Rev. D 20 (1979) 3120 [INSPIRE].ADSGoogle Scholar
  29. [29]
    N.H. Christ and T.D. Lee, Quantum Expansion of Soliton Solutions, Phys. Rev. D 12 (1975) 1606 [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    M. Sanati and A. Saxena, Half-kink lattice solution of the ϕ 6 model, J. Phys. A 32 (1999) 4311.ADSzbMATHGoogle Scholar
  31. [31]
    R.H. Goodman, A. Rahman, M.J. Bellanich and C.N. Morrison, A Mechanical Analog of the Two-bounce Resonance of Solitary Waves: Modeling and Experiment, Chaos 25 (2015) 043109 [arXiv:1503.08315] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • A. Demirkaya
    • 1
  • R. Decker
    • 1
  • P. G. Kevrekidis
    • 2
  • I. C. Christov
    • 3
    • 4
  • A. Saxena
    • 3
  1. 1.Mathematics DepartmentUniversity of HartfordWest HartfordU.S.A.
  2. 2.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstU.S.A.
  3. 3.Center for Nonlinear Studies and Theoretical DivisionLos Alamos National LaboratoryLos AlamosU.S.A.
  4. 4.School of Mechanical EngineeringPurdue UniversityWest LafayetteU.S.A.

Personalised recommendations