Gluon-fusion Higgs production in the Standard Model Effective Field Theory

An Erratum to this article was published on 26 February 2018

This article has been updated

Abstract

We provide the complete set of predictions needed to achieve NLO accuracy in the Standard Model Effective Field Theory at dimension six for Higgs production in gluon fusion. In particular, we compute for the first time the contribution of the chromomagnetic operator \( {\overline{Q}}_L\varPhi \sigma {q}_RG \) at NLO in QCD, which entails two-loop virtual and one-loop real contributions, as well as renormalisation and mixing with the Yukawa operator \( {\varPhi}^{\dagger}\varPhi\ {\overline{Q}}_L\varPhi {q}_R \) and the gluon-fusion operator ΦΦ GG. Focusing on the top-quark-Higgs couplings, we consider the phenomenological impact of the NLO corrections in constraining the three relevant operators by implementing the results into the MadGraph5_aMC@NLO frame-work. This allows us to compute total cross sections as well as to perform event generation at NLO that can be directly employed in experimental analyses.

A preprint version of the article is available at ArXiv.

Change history

  • 26 February 2018

    We have found that the definition of the operator \( {\mathcal{O}}_1 \) given in equation (2.2) and the one actually used to derive our results, including the renormalisation matrix, the anomalous dimension matrix and the RGE solutions presented in the paper, differ by an overall minus sign.

References

  1. [1]

    CMS collaboration, Search for the associated production of the Higgs boson with a top-quark pair, JHEP 09 (2014) 087 [Erratum ibid. 10 (2014) 106] [arXiv:1408.1682] [INSPIRE].

  2. [2]

    ATLAS collaboration, Search for H → γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector, Phys. Lett. B 740 (2015) 222 [arXiv:1409.3122] [INSPIRE].

  3. [3]

    ATLAS collaboration, Search for the associated production of the Higgs boson with a top quark pair in multilepton final states with the ATLAS detector, Phys. Lett. B 749 (2015) 519 [arXiv:1506.05988] [INSPIRE].

  4. [4]

    ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying into \( b\overline{b} \) in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 349 [arXiv:1503.05066] [INSPIRE].

  5. [5]

    ATLAS, CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

  6. [6]

    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    C.N. Leung, S.T. Love and S. Rao, Low-Energy Manifestations of a New Interaction Scale: Operator Analysis, Z. Phys. C 31 (1986) 433 [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    G. Passarino, NLO Inspired Effective Lagrangians for Higgs Physics, Nucl. Phys. B 868 (2013) 416 [arXiv:1209.5538] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  10. [10]

    F. Maltoni, K. Mawatari and M. Zaro, Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects, Eur. Phys. J. C 74 (2014) 2710 [arXiv:1311.1829] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    C. Degrande, B. Fuks, K. Mawatari, K. Mimasu and V. Sanz, Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD, Eur. Phys. J. C 77 (2017) 262 [arXiv:1609.04833] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD, JHEP 10 (2016) 123 [arXiv:1607.05330] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    C. Degrande, F. Maltoni, J. Wang and C. Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes, Phys. Rev. D 91 (2015) 034024 [arXiv:1412.5594] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    C. Zhang, Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    R. Röntsch and M. Schulze, Constraining couplings of top quarks to the Z boson in \( t\overline{t} \) + Z production at the LHC, JHEP 07 (2014) 091 [Erratum ibid. 09 (2015) 132] [arXiv:1404.1005] [INSPIRE].

  18. [18]

    R. Röntsch and M. Schulze, Probing top-Z dipole moments at the LHC and ILC, JHEP 08 (2015) 044 [arXiv:1501.05939] [INSPIRE].

    Article  Google Scholar 

  19. [19]

    C. Zhang, Effective field theory approach to top-quark decay at next-to-leading order in QCD, Phys. Rev. D 90 (2014) 014008 [arXiv:1404.1264] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    C. Hartmann and M. Trott, On one-loop corrections in the standard model effective field theory; the Γ(h → γ γ) case, JHEP 07 (2015) 151 [arXiv:1505.02646] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, NLO Higgs effective field theory and κ-framework, JHEP 07 (2015) 175 [arXiv:1505.03706] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    C. Hartmann and M. Trott, Higgs Decay to Two Photons at One Loop in the Standard Model Effective Field Theory, Phys. Rev. Lett. 115 (2015) 191801 [arXiv:1507.03568] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    R. Gauld, B.D. Pecjak and D.J. Scott, One-loop corrections to \( h\to b\overline{b} \) and \( h\to \tau \overline{\tau} \) decays in the Standard Model Dimension-6 EFT: four-fermion operators and the large-m t limit, JHEP 05 (2016) 080 [arXiv:1512.02508] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    C. Anastasiou et al., Higgs boson gluon-fusion production beyond threshold in N 3 LO QCD, JHEP 03 (2015) 091 [arXiv:1411.3584] [INSPIRE].

    Article  Google Scholar 

  25. [25]

    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

  29. [29]

    R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].

  30. [30]

    C. Anastasiou, S. Bucherer and Z. Kunszt, HPro: A NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses, JHEP 10 (2009) 068 [arXiv:0907.2362] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: Virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473 [arXiv:0907.2998] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  35. [35]

    R. Mueller and D.G. Öztürk, On the computation of finite bottom-quark mass effects in Higgs boson production, JHEP 08 (2016) 055 [arXiv:1512.08570] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    J.M. Lindert, K. Melnikov, L. Tancredi and C. Wever, Top-bottom interference effects in Higgs plus jet production at the LHC, Phys. Rev. Lett. 118 (2017) 252002 [arXiv:1703.03886] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    X. Chen, J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-Leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE].

  41. [41]

    G. Cullen et al., Next-to-Leading-Order QCD Corrections to Higgs Boson Production Plus Three Jets in Gluon Fusion, Phys. Rev. Lett. 111 (2013) 131801 [arXiv:1307.4737] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    G. Brooijmans et al., Les Houches 2015: Physics at TeV colliders - new physics working group report, arXiv:1605.02684 [INSPIRE].

  43. [43]

    R.V. Harlander, S. Liebler and H. Mantler, SusHi Bento: Beyond NNLO and the heavy-top limit, Comput. Phys. Commun. 212 (2017) 239 [arXiv:1605.03190] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    C. Anastasiou et al., CP-even scalar boson production via gluon fusion at the LHC, JHEP 09 (2016) 037 [arXiv:1605.05761] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP 05 (2014) 022 [arXiv:1312.3317] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    M. Schlaffer, M. Spannowsky, M. Takeuchi, A. Weiler and C. Wymant, Boosted Higgs Shapes, Eur. Phys. J. C 74 (2014) 3120 [arXiv:1405.4295] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    M. Buschmann, C. Englert, D. Goncalves, T. Plehn and M. Spannowsky, Resolving the Higgs-Gluon Coupling with Jets, Phys. Rev. D 90 (2014) 013010 [arXiv:1405.7651] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    M. Grazzini, A. Ilnicka, M. Spira and M. Wiesemann, Modeling BSM effects on the Higgs transverse-momentum spectrum in an EFT approach, JHEP 03 (2017) 115 [arXiv:1612.00283] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    M. Grazzini, A. Ilnicka, M. Spira and M. Wiesemann, Effective Field Theory for Higgs properties parametrisation: the transverse momentum spectrum case, arXiv:1705.05143 [INSPIRE].

  50. [50]

    C. Degrande, J.M. Gerard, C. Grojean, F. Maltoni and G. Servant, Probing Top-Higgs Non-Standard Interactions at the LHC, JHEP 07 (2012) 036 [Erratum ibid. 03 (2013) 032] [arXiv:1205.1065] [INSPIRE].

  51. [51]

    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  52. [52]

    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  56. [56]

    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    D. Choudhury and P. Saha, Higgs production as a probe of anomalous top couplings, JHEP 08 (2012) 144 [arXiv:1201.4130] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].

  59. [59]

    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    G. Kramer and B. Lampe, Two Jet Cross-Section in e + e Annihilation, Z. Phys. C 34 (1987) 497 [Erratum ibid. C 42 (1989) 504] [INSPIRE].

  61. [61]

    T. Matsuura and W.L. van Neerven, Second Order Logarithmic Corrections to the Drell-Yan Cross-section, Z. Phys. C 38 (1988) 623 [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    R.V. Harlander, Virtual corrections to gg → H to two loops in the heavy top limit, Phys. Lett. B 492 (2000) 74 [hep-ph/0007289] [INSPIRE].

  64. [64]

    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].

  65. [65]

    S. Moch, J.A.M. Vermaseren and A. Vogt, The Quark form-factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [INSPIRE].

  66. [66]

    T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].

  67. [67]

    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  68. [68]

    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, The quark and gluon form factors to three loops in QCD through to \( \mathcal{O}\left({\upepsilon}^2\right) \), JHEP 11 (2010) 102 [arXiv:1010.4478] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  69. [69]

    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [INSPIRE].

  71. [71]

    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    M. Gorbahn and U. Haisch, Indirect probes of the trilinear Higgs coupling: gg → h and h → γγ, JHEP 10 (2016) 094 [arXiv:1607.03773] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    G. Degrassi, P.P. Giardino, F. Maltoni and D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC, JHEP 12 (2016) 080 [arXiv:1607.04251] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    D. Ghosh and M. Wiebusch, Dimension-six triple gluon operator in Higgs+jet observables, Phys. Rev. D 91 (2015) 031701 [arXiv:1411.2029] [INSPIRE].

    ADS  Google Scholar 

  75. [75]

    F. Krauss, S. Kuttimalai and T. Plehn, LHC multijet events as a probe for anomalous dimension-six gluon interactions, Phys. Rev. D 95 (2017) 035024 [arXiv:1611.00767] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    C. Zhang, Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity, arXiv:1708.05928 [INSPIRE].

  78. [78]

    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  79. [79]

    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  80. [80]

    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].

  81. [81]

    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  82. [82]

    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].

  83. [83]

    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  84. [84]

    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

  85. [85]

    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  86. [86]

    R. Bonciani, P. Mastrolia and E. Remiddi, Vertex diagrams for the QED form-factors at the two loop level, Nucl. Phys. B 661 (2003) 289 [Erratum ibid. B 702 (2004) 359] [hep-ph/0301170] [INSPIRE].

  87. [87]

    R. Bonciani, P. Mastrolia and E. Remiddi, Master integrals for the two loop QCD virtual corrections to the forward backward asymmetry, Nucl. Phys. B 690 (2004) 138 [hep-ph/0311145] [INSPIRE].

  88. [88]

    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic Results for Virtual QCD Corrections to Higgs Production and Decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].

  89. [89]

    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

  90. [90]

    A.I. Davydychev and M.Yu. Kalmykov, New results for the ϵ-expansion of certain one, two and three loop Feynman diagrams, Nucl. Phys. B 605 (2001) 266 [hep-th/0012189] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  91. [91]

    A.I. Davydychev and M.Yu. Kalmykov, Massive Feynman diagrams and inverse binomial sums, Nucl. Phys. B 699 (2004) 3 [hep-th/0303162] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  92. [92]

    M.Yu. Kalmykov, About higher order ϵ-expansion of some massive two- and three-loop master-integrals, Nucl. Phys. B 718 (2005) 276 [hep-ph/0503070] [INSPIRE].

  93. [93]

    M.Yu. Kalmykov and A. Sheplyakov, lsjk — a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine functions, Comput. Phys. Commun. 172 (2005) 45 [hep-ph/0411100] [INSPIRE].

  94. [94]

    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  95. [95]

    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

  96. [96]

    D. Maître, Extension of HPL to complex arguments, Comput. Phys. Commun. 183 (2012) 846 [hep-ph/0703052] [INSPIRE].

  97. [97]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  98. [98]

    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    ADS  Article  Google Scholar 

  99. [99]

    C. Degrande, Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  100. [100]

    V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  101. [101]

    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].

    ADS  Article  Google Scholar 

  102. [102]

    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].

    ADS  Article  Google Scholar 

  103. [103]

    F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11 (2014) 079 [arXiv:1408.6542] [INSPIRE].

    ADS  Article  Google Scholar 

  104. [104]

    O. Mattelaer, On the maximal use of Monte Carlo samples: re-weighting events at NLO accuracy, Eur. Phys. J. C 76 (2016) 674 [arXiv:1607.00763] [INSPIRE].

    ADS  Article  Google Scholar 

  105. [105]

    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  106. [106]

    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    ADS  Article  Google Scholar 

  107. [107]

    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

  108. [108]

    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

    ADS  Article  Google Scholar 

  109. [109]

    H. Mantler and M. Wiesemann, Hadronic Higgs production through NLO + PS in the SM, the 2HDM and the MSSM, Eur. Phys. J. C 75 (2015) 257 [arXiv:1504.06625] [INSPIRE].

    ADS  Article  Google Scholar 

  110. [110]

    CMS collaboration, Measurements of properties of the Higgs boson in the diphoton decay channel with the full 2016 data set, CMS-PAS-HIG-16-040.

  111. [111]

    M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schonherr, F. Krauss and T. Plehn, Mass Effects in the Higgs-Gluon Coupling: Boosted vs Off-Shell Production, JHEP 02 (2015) 038 [arXiv:1410.5806] [INSPIRE].

    ADS  Article  Google Scholar 

  112. [112]

    R.V. Harlander, H. Mantler and M. Wiesemann, Transverse momentum resummation for Higgs production via gluon fusion in the MSSM, JHEP 11 (2014) 116 [arXiv:1409.0531] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicolas Deutschmann.

Additional information

ArXiv ePrint: 1708.00460

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deutschmann, N., Duhr, C., Maltoni, F. et al. Gluon-fusion Higgs production in the Standard Model Effective Field Theory. J. High Energ. Phys. 2017, 63 (2017). https://doi.org/10.1007/JHEP12(2017)063

Download citation

Keywords

  • NLO Computations
  • Phenomenological Models