Journal of High Energy Physics

, 2017:58 | Cite as

On mini-superspace limit of boundary three-point function in Liouville field theory

  • Elena Apresyan
  • Gor Sarkissian
Open Access
Regular Article - Theoretical Physics


We study the mini-superspace semiclassical limit of the boundary three-point function in the Liouville field theory. We compute also matrix elements for the Morse potential quantum mechanics. An exact agreement between the former and the latter is found. We show that both of them are given by the generalized hypergeometric functions.


Conformal Field Models in String Theory Bosonic Strings D-branes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3 gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].ADSGoogle Scholar
  2. [2]
    K.B. Alkalaev and V.A. Belavin, Classical conformal blocks via AdS/CFT correspondence, JHEP 08 (2015) 049 [arXiv:1504.05943] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Mironov and A. Morozov, Proving AGT relations in the large-c limit, Phys. Lett. B 682 (2009) 118 [arXiv:0909.3531] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    V. Fateev and S. Ribault, The Large central charge limit of conformal blocks, JHEP 02 (2012) 001 [arXiv:1109.6764] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Hama and K. Hosomichi, AGT relation in the light asymptotic limit, JHEP 10 (2013) 152 [arXiv:1307.8174] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Piatek, Classical torus conformal block, \( \mathcal{N}={2}^{\ast } \) twisted superpotential and the accessory parameter of Lamé equation, JHEP 03 (2014) 124 [arXiv:1309.7672] [INSPIRE].
  8. [8]
    H. Poghosyan, The light asymptotic limit of conformal blocks in \( \mathcal{N}=1 \) super Liouville field theory, JHEP 09 (2017) 062 [arXiv:1706.07474] [INSPIRE].
  9. [9]
    H. Poghosyan, R. Poghossian and G. Sarkissian, The light asymptotic limit of conformal blocks in Toda field theory, JHEP 05 (2016) 087 [arXiv:1602.04829] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Ribault, Boundary three-point function on AdS 2 D-branes, JHEP 01 (2008) 004 [arXiv:0708.3028] [INSPIRE].
  11. [11]
    S. Ribault, Minisuperspace limit of the AdS 3 WZNW model, JHEP 04 (2010) 096 [arXiv:0912.4481] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    V. Fateev and S. Ribault, Conformal Toda theory with a boundary, JHEP 12 (2010) 089 [arXiv:1007.1293] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    H. Poghosyan and G. Sarkissian, On classical and semiclassical properties of the Liouville theory with defects, JHEP 11 (2015) 005 [arXiv:1505.00366] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the Conformal Bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    E. Braaten, T. Curtright, G. Ghandour and C.B. Thorn, Nonperturbative Weak Coupling Analysis of the Quantum Liouville Field Theory, Annals Phys. 153 (1984) 147 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    E. Braaten, T. Curtright and C.B. Thorn, An Exact Operator Solution of the Quantum Liouville Field Theory, Annals Phys. 147 (1983) 365 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    C.B. Thorn, Liouville perturbation theory, Phys. Rev. D 66 (2002) 027702 [hep-th/0204142] [INSPIRE].
  18. [18]
    H. Dorn and H.J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].
  19. [19]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].
  20. [20]
    Z. Bajnok, C. Rim and A. Zamolodchikov, Sinh-Gordon boundary TBA and boundary Liouville reflection amplitude, Nucl. Phys. B 796 (2008) 622 [arXiv:0710.4789] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    H. Dorn and G. Jorjadze, Operator Approach to Boundary Liouville Theory, Annals Phys. 323 (2008) 2799 [arXiv:0801.3206] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    V. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, Boundary Liouville field theory. 1. Boundary state and boundary two point function, hep-th/0001012 [INSPIRE].
  23. [23]
    B. Ponsot and J. Teschner, Boundary Liouville field theory: Boundary three point function, Nucl. Phys. B 622 (2002) 309 [hep-th/0110244] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    E.W. Barnes, Theory of the double gamma function, Phil. Trans. Math. Phys. Eng. Sci. A 196 (1901) 265.Google Scholar
  25. [25]
    T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. U. Tokyo 24 (1977) 167 [Proc. Japan Acad. 52 (1976) 355].Google Scholar
  26. [26]
    L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge England (1966).Google Scholar
  27. [27]
    W.N. Bailey, Generalised Hypergeometric Series, Stechert-Hafner Service Agency (1964).Google Scholar
  28. [28]
    F.J.W. Whipple, A group of generalized hypergeometric series: relations between 120 allied scries of the type \( F\left[\begin{array}{c}\hfill a,\ b,\ c\hfill \\ {}\hfill \kern0.98em d,\kern0.24em e\hfill \end{array}\right] \), Proc. Lond. Math. Soc. 23 (1925) 104.Google Scholar
  29. [29]
    J. Teschner, On boundary perturbations in Liouville theory and brane dynamics in noncritical string theories, JHEP 04 (2004) 023 [hep-th/0308140] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J. Teschner, Remarks on Liouville theory with boundary, PoS(tmr2000)041 [hep-th/0009138] [INSPIRE].
  31. [31]
    I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press (2015).Google Scholar
  32. [32]
    H. Bateman, Tables of integral Transforms. Volume I, A. Erdèlyi ed., McGraw-Hill, New York U.S.A. (1954).Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Yerevan Physics InstituteYerevanArmenia
  2. 2.Department of PhysicsYerevan State UniversityYerevanArmenia

Personalised recommendations