Advertisement

Journal of High Energy Physics

, 2017:46 | Cite as

The photon content of the proton

  • Aneesh V. Manohar
  • Paolo Nason
  • Gavin P. Salam
  • Giulia Zanderighi
Open Access
Regular Article - Theoretical Physics

Abstract

The photon PDF of the proton is needed for precision comparisons of LHC cross sections with theoretical predictions. In a recent paper, we showed how the photon PDF could be determined in terms of the electromagnetic proton structure functions F2 and F L measured in electron-proton scattering experiments, and gave an explicit formula for the PDF including all terms up to next-to-leading order. In this paper we give details of the derivation. We obtain the photon PDF using the factorisation theorem and applying it to suitable BSM hard scattering processes. We also obtain the same PDF in a process-independent manner using the usual definition of PDFs in terms of light-cone Fourier transforms of products of operators. We show how our method gives an exact representation for the photon PDF in terms of F2 and F L , valid to all orders in QED and QCD, and including all non-perturbative corrections. This representation is then used to give an explicit formula for the photon PDF to one order higher than our previous result. We also generalise our results to obtain formulæ for the polarised photon PDF, as well as the photon TMDPDF. Using our formula, we derive the Pγi subset of DGLAP splitting functions to order αα s and α2, which agree with known results. We give a detailed explanation of the approach that we follow to determine a photon PDF and its uncertainty within the above framework.

Keywords

Deep Inelastic Scattering (Phenomenology) QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [INSPIRE].ADSGoogle Scholar
  2. [2]
    A. Denner, S. Dittmaier, S. Kallweit and A. Muck, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP 03 (2012) 075 [arXiv:1112.5142] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    LHC Higgs Cross section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs Cross sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  4. [4]
    ATLAS collaboration, Measurement of the transverse momentum and ϕ η distributions of Drell-Yan lepton pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].
  5. [5]
    ATLAS collaboration, Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2016) 009 [arXiv:1606.01736] [INSPIRE].
  6. [6]
    E. Accomando, J. Fiaschi, F. Hautmann, S. Moretti and C.H. Shepherd-Themistocleous, Photon-initiated production of a dilepton final state at the LHC: Cross section versus forward-backward asymmetry studies, Phys. Rev. D 95 (2017) 035014 [arXiv:1606.06646] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Alioli et al., Precision studies of observables in ppW l and pp → γ, Z → ℓ+ processes at the LHC, Eur. Phys. J. C 77 (2017) 280 [arXiv:1606.02330] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Bourilkov, Photon-induced Background for Dilepton Searches and Measurements in pp Collisions at 13 TeV, arXiv:1606.00523 [INSPIRE].
  9. [9]
    D. Pagani, I. Tsinikos and M. Zaro, The impact of the photon PDF and electroweak corrections on \( t\overline{t} \) distributions, Eur. Phys. J. C 76 (2016) 479 [arXiv:1606.01915] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Luszczak, A. Szczurek and C. Royon, W + W pair production in proton-proton collisions: small missing terms, JHEP 02 (2015) 098 [arXiv:1409.1803] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Denner, S. Dittmaier, M. Hecht and C. Pasold, NLO QCD and electroweak corrections to Z + γ production with leptonic Z-boson decays, JHEP 02 (2016) 057 [arXiv:1510.08742] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Ababekri, S. Dulat, J. Isaacson, C. Schmidt and C.P. Yuan, Implication of CMS data on photon PDFs, arXiv:1603.04874 [INSPIRE].
  13. [13]
    B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Electroweak corrections to ppμ + μ e + e + X at the LHC: a Higgs background study, Phys. Rev. Lett. 116 (2016) 161803 [arXiv:1601.07787] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    B. Biedermann et al., Next-to-leading-order electroweak corrections to ppW + W 4 leptons at the LHC, JHEP 06 (2016) 065 [arXiv:1605.03419] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Wang, R.-Y. Zhang, W.-G. Ma, X.-Z. Li and L. Guo, QCD and electroweak corrections to ZZ + jet production with Z-boson leptonic decays at the LHC, Phys. Rev. D 94 (2016) 013011 [arXiv:1604.04080] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Kallweit, J.M. Lindert, S. Pozzorini and M. Schonherr, NLO QCD+EW predictions for 2ℓ2ν diboson signatures at the LHC, arXiv:1705.00598 [INSPIRE].
  17. [17]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].
  18. [18]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  19. [19]
    C. Schmidt, J. Pumplin, D. Stump and C.P. Yuan, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev. D 93 (2016) 114015 [arXiv:1509.02905] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, Photon-initiated processes at high mass, Phys. Rev. D 94 (2016) 074008 [arXiv:1607.04635] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Drees and D. Zeppenfeld, Production of Supersymmetric Particles in Elastic ep Collisions, Phys. Rev. D 39 (1989) 2536 [INSPIRE].ADSGoogle Scholar
  24. [24]
    H. Anlauf, H.D. Dahmen, P. Manakos, T. Mannel and T. Ohl, KRONOS: A Monte Carlo event generator for higher order electromagnetic radiative corrections to deep inelastic scattering at HERA, Comput. Phys. Commun. 70 (1992) 97 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Mukherjee and C. Pisano, Manifestly covariant analysis of the QED Compton process in epeγp and epeγX, Eur. Phys. J. C 30 (2003) 477 [hep-ph/0306275] [INSPIRE].
  26. [26]
    D. de Florian, G.F.R. Sborlini and G. Rodrigo, QED corrections to the Altarelli-Parisi splitting functions, Eur. Phys. J. C 76 (2016) 282 [arXiv:1512.00612] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D. de Florian, G.F.R. Sborlini and G. Rodrigo, Two-loop QED corrections to the Altarelli-Parisi splitting functions, JHEP 10 (2016) 056 [arXiv:1606.02887] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  28. [28]
    M.W. Krasny, The Gamma Factory proposal for CERN, arXiv:1511.07794 [INSPIRE].
  29. [29]
    M.D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press, (2014).Google Scholar
  30. [30]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R.D. Carlitz, J.C. Collins and A.H. Mueller, The Role of the Axial Anomaly in Measuring Spin Dependent Parton Distributions, Phys. Lett. B 214 (1988) 229 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Altarelli and G.G. Ross, The Anomalous Gluon Contribution to Polarized Leptoproduction, Phys. Lett. B 212 (1988) 391 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R.L. Jaffe and A. Manohar, The G(1) Problem: Fact and Fantasy on the Spin of the Proton, Nucl. Phys. B 337 (1990) 509 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C.A. Aidala, S.D. Bass, D. Hasch and G.K. Mallot, The Spin Structure of the Nucleon, Rev. Mod. Phys. 85 (2013) 655 [arXiv:1209.2803] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].ADSGoogle Scholar
  36. [36]
    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].
  37. [37]
    A.V. Manohar, Parton distributions from an operator viewpoint, Phys. Rev. Lett. 65 (1990) 2511 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A.V. Manohar, Polarized parton distribution functions, Phys. Rev. Lett. 66 (1991) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R.L. Jaffe, Parton Distribution Functions for Twist Four, Nucl. Phys. B 229 (1983) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.C. Collins, Foundations of Perturbative QCD, vol. 32 of Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, Cambridge, (2011).Google Scholar
  41. [41]
    J. Kodaira, S. Matsuda, T. Muta, K. Sasaki and T. Uematsu, QCD Effects in Polarized Electroproduction, Phys. Rev. D 20 (1979) 627 [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.C. Collins, Renormalization, vol. 26 of Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, (1986).Google Scholar
  43. [43]
    R. Angeles-Martinez et al., Transverse Momentum Dependent (TMD) parton distribution functions: status and prospects, Acta Phys. Polon. B 46 (2015) 2501 [arXiv:1507.05267] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    E.B. Zijlstra and W.L. van Neerven, Order α s2 QCD corrections to the deep inelastic proton structure functions F 2 and F L, Nucl. Phys. B 383 (1992) 525 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A1 collaboration, J.C. Bernauer et al., Electric and magnetic form factors of the proton, Phys. Rev. C 90 (2014) 015206 [arXiv:1307.6227] [INSPIRE].
  46. [46]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  47. [47]
    A. Vogt, S. Moch and J. Vermaseren, Photon-parton splitting functions at the next-to-next-to-leading order of QCD, Acta Phys. Polon. B 37 (2006) 683 [hep-ph/0511112] [INSPIRE].
  48. [48]
    J. Blumlein, The Theory of Deeply Inelastic Scattering, Prog. Part. Nucl. Phys. 69 (2013) 28 [arXiv:1208.6087] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Ricco, S. Simula and M. Battaglieri, Power corrections in the longitudinal and transverse structure functions of proton and deuteron, Nucl. Phys. B 555 (1999) 306 [hep-ph/9901360] [INSPIRE].
  50. [50]
    G. Lee, J.R. Arrington and R.J. Hill, Extraction of the proton radius from electron-proton scattering data, Phys. Rev. D 92 (2015) 013013 [arXiv:1505.01489] [INSPIRE].ADSGoogle Scholar
  51. [51]
    HERMES collaboration, A. Airapetian et al., Inclusive Measurements of Inelastic Electron and Positron Scattering from Unpolarized Hydrogen and Deuterium Targets, JHEP 05 (2011) 126 [arXiv:1103.5704] [INSPIRE].
  52. [52]
    CLAS collaboration, M. Osipenko et al., A kinematically complete measurement of the proton structure function F 2 in the resonance region and evaluation of its moments, Phys. Rev. D 67 (2003) 092001 [hep-ph/0301204] [INSPIRE].
  53. [53]
    M.E. Christy and P.E. Bosted, Empirical fit to precision inclusive electron-proton cross-sections in the resonance region, Phys. Rev. C 81 (2010) 055213 [arXiv:0712.3731] [INSPIRE].ADSGoogle Scholar
  54. [54]
    H. Abramowicz, E.M. Levin, A. Levy and U. Maor, A parametrization of σ T p) above the resonance region Q 2 ≥ 0, Phys. Lett. B 269 (1991) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    E143 collaboration, K. Abe et al., Measurements of R = σ L/σ T for 0.03 < x < 0.1 and fit to world data, Phys. Lett. B 452 (1999) 194 [hep-ex/9808028] [INSPIRE].
  56. [56]
    Jefferson Lab Hall C E94-110 collaboration, Y. Liang et al., Measurement of R = σ L/σ T and the separated longitudinal and transverse structure functions in the nucleon resonance region, nucl-ex/0410027 [INSPIRE].
  57. [57]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  59. [59]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  61. [61]
    W.L. van Neerven and E.B. Zijlstra, Order α s2 contributions to the deep inelastic Wilson coefficient, Phys. Lett. B 272 (1991) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    W.L. van Neerven and A. Vogt, NNLO evolution of deep inelastic structure functions: The nonsinglet case, Nucl. Phys. B 568 (2000) 263 [hep-ph/9907472] [INSPIRE].
  63. [63]
    W.L. van Neerven and A. Vogt, NNLO evolution of deep inelastic structure functions: The singlet case, Nucl. Phys. B 588 (2000) 345 [hep-ph/0006154] [INSPIRE].
  64. [64]
    G.P. Salam and J. Rojo, A Higher Order Perturbative Parton Evolution Toolkit (HOPPET), Comput. Phys. Commun. 180 (2009) 120 [arXiv:0804.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 115 (2015) 082002 [arXiv:1506.02660] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    F.A. Dreyer and A. Karlberg, Vector-Boson Fusion Higgs Production at Three Loops in QCD, Phys. Rev. Lett. 117 (2016) 072001 [arXiv:1606.00840] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, The impact of the final HERA combined data on PDFs obtained from a global fit, Eur. Phys. J. C 76 (2016) 186 [arXiv:1601.03413] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A.M. Cooper-Sarkar, I. Abt, B. Foster, M. Wing, V. Myronenko and K. Wichmann, Study of HERA data at Low Q 2 and Low x, PoS(DIS2016)013 [arXiv:1605.08577] [INSPIRE].
  69. [69]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  70. [70]
    A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: The singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].
  71. [71]
    S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension, JHEP 01 (2010) 060 [arXiv:0911.2329] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, The photon PDF in events with rapidity gaps, Eur. Phys. J. C 76 (2016) 255 [arXiv:1601.03772] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A.V. Manohar, P. Nason, G.P. Salam and G. Zanderighi, The Photon Content of the Proton, arXiv:1708.01256 [INSPIRE].
  74. [74]
    D. Lurie, Particles and Fields, John Wiley & Sons Inc., (1968).Google Scholar
  75. [75]
    M. Beneke and M. Neubert, QCD factorization for BP P and BP V decays, Nucl. Phys. B 675 (2003) 333 [hep-ph/0308039] [INSPIRE].
  76. [76]
    J.C. Collins, A.V. Manohar and M.B. Wise, Renormalization of the vector current in QED, Phys. Rev. D 73 (2006) 105019 [hep-th/0512187] [INSPIRE].ADSGoogle Scholar
  77. [77]
    W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].ADSGoogle Scholar
  78. [78]
    S. Moch and J.A.M. Vermaseren, Deep inelastic structure functions at two loops, Nucl. Phys. B 573 (2000) 853 [hep-ph/9912355] [INSPIRE].
  79. [79]
    E.B. Zijlstra and W.L. van Neerven, Order-α s2 corrections to the polarized structure function g 1(x, Q 2), Nucl. Phys. B 417 (1994) 61 [Erratum ibid. B 426 (1994) 245] [INSPIRE].
  80. [80]
    M. Buza, Y. Matiounine, J. Smith, R. Migneron and W.L. van Neerven, Heavy quark coefficient functions at asymptotic values Q 2m 2, Nucl. Phys. B 472 (1996) 611 [hep-ph/9601302] [INSPIRE].
  81. [81]
    M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory, Eur. Phys. J. C 1 (1998) 301 [hep-ph/9612398] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Aneesh V. Manohar
    • 1
  • Paolo Nason
    • 2
  • Gavin P. Salam
    • 3
  • Giulia Zanderighi
    • 3
    • 4
  1. 1.Department of PhysicsUniversity of California at San DiegoLa JollaU.S.A.
  2. 2.Università di Milano-Bicocca and INFN, Sezione di Milano-BicoccaMilanoItaly
  3. 3.CERN, Theoretical Physics DepartmentGeneva 23Switzerland
  4. 4.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.

Personalised recommendations