Advertisement

Journal of High Energy Physics

, 2017:44 | Cite as

Collider probes of axion-like particles

  • Martin Bauer
  • Matthias Neubert
  • Andrea ThammEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Axion-like particles (ALPs), which are gauge-singlets under the Standard Model (SM), appear in many well-motivated extensions of the SM. Describing the interactions of ALPs with SM fields by means of an effective Lagrangian, we discuss ALP decays into SM particles at one-loop order, including for the first time a calculation of the aπππ decay rates for ALP masses below a few GeV. We argue that, if the ALP couples to at least some SM particles with couplings of order (0.01 − 1) TeV−1, its mass must be above 1 MeV. Taking into account the possibility of a macroscopic ALP decay length, we show that large regions of so far unconstrained parameter space can be explored by searches for the exotic, on-shell Higgs and Z decays hZa, haa and Zγa in Run-2 of the LHC with an integrated luminosity of 300 fb−1. This includes the parameter space in which ALPs can explain the anomalous magnetic moment of the muon. Considering subsequent ALP decays into photons and charged leptons, we show that the LHC provides unprecedented sensitivity to the ALP-photon and ALP-lepton couplings in the mass region above a few MeV, even if the relevant ALP couplings are loop suppressed and the aγγ and a → ℓ+ branching ratios are significantly less than 1. We also discuss constraints on the ALP parameter space from electroweak precision tests.

Keywords

Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A.R. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].
  8. [8]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199.ADSCrossRefGoogle Scholar
  9. [9]
    M.J. Dolan, F. Kahlhoefer, C. McCabe and K. Schmidt-Hoberg, A taste of dark matter: flavour constraints on pseudoscalar mediators, JHEP 03 (2015) 171 [Erratum ibid. 07 (2015) 103] [arXiv:1412.5174] [INSPIRE].
  10. [10]
    D. Chang, W.-F. Chang, C.-H. Chou and W.-Y. Keung, Large two loop contributions to g − 2 from a generic pseudoscalar boson, Phys. Rev. D 63 (2001) 091301 [hep-ph/0009292] [INSPIRE].
  11. [11]
    W.J. Marciano, A. Masiero, P. Paradisi and M. Passera, Contributions of axionlike particles to lepton dipole moments, Phys. Rev. D 94 (2016) 115033 [arXiv:1607.01022] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A.J. Krasznahorkay et al., Observation of anomalous internal pair creation in 8 Be: a possible indication of a light, neutral boson, Phys. Rev. Lett. 116 (2016) 042501 [arXiv:1504.01527] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.L. Feng et al., Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev. D 95 (2017) 035017 [arXiv:1608.03591] [INSPIRE].ADSGoogle Scholar
  14. [14]
    U. Ellwanger and S. Moretti, Possible explanation of the electron positron anomaly at 17 MeV in 8 Be transitions through a light pseudoscalar, JHEP 11 (2016) 039 [arXiv:1609.01669] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    C. Boehm, M.J. Dolan, C. McCabe, M. Spannowsky and C.J. Wallace, Extended gamma-ray emission from Coy Dark Matter, JCAP 05 (2014) 009 [arXiv:1401.6458] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Berlin, D. Hooper and S.D. McDermott, Simplified dark matter models for the galactic center gamma-ray excess, Phys. Rev. D 89 (2014) 115022 [arXiv:1404.0022] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Arias et al., WISPy cold dark matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    IAXO collaboration, I. Irastorza et al., The International Axion Observatory IAXO. Letter of Intent to the CERN SPS committee, CERN-SPSC-2013-022 (2013).
  20. [20]
    S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    B. Döbrich, J. Jaeckel, F. Kahlhoefer, A. Ringwald and K. Schmidt-Hoberg, ALPtraum: ALP production in proton beam dump experiments, JHEP 02 (2016) 018 [arXiv:1512.03069] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    M. Kleban and R. Rabadán, Collider bounds on pseudoscalars coupling to gauge bosons, hep-ph/0510183 [INSPIRE].
  23. [23]
    K. Mimasu and V. Sanz, ALPs at colliders, JHEP 06 (2015) 173 [arXiv:1409.4792] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Jaeckel and M. Spannowsky, Probing MeV to 90 GeV axion-like particles with LEP and LHC, Phys. Lett. B 753 (2016) 482 [arXiv:1509.00476] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Knapen, T. Lin, H.K. Lou and T. Melia, Searching for axionlike particles with ultraperipheral heavy-ion collisions, Phys. Rev. Lett. 118 (2017) 171801 [arXiv:1607.06083] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    I. Brivio et al., ALPs effective field theory and collider signatures, Eur. Phys. J. C 77 (2017) 572 [arXiv:1701.05379] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.E. Kim and U.W. Lee, Z 0 decay to photon and variant axion, Phys. Lett. B 233 (1989) 496 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Djouadi, P.M. Zerwas and J. Zunft, Search for light pseudoscalar Higgs bosons in Z decays, Phys. Lett. B 259 (1991) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Rupak and E.H. Simmons, Limits on pseudoscalar bosons from rare Z decays at LEP, Phys. Lett. B 362 (1995) 155 [hep-ph/9507438] [INSPIRE].
  30. [30]
    E. Izaguirre, T. Lin and B. Shuve, Searching for axionlike particles in flavor-changing neutral current processes, Phys. Rev. Lett. 118 (2017) 111802 [arXiv:1611.09355] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    B.A. Dobrescu, G.L. Landsberg and K.T. Matchev, Higgs boson decays to CP odd scalars at the Tevatron and beyond, Phys. Rev. D 63 (2001) 075003 [hep-ph/0005308] [INSPIRE].
  32. [32]
    B.A. Dobrescu and K.T. Matchev, Light axion within the next-to-minimal supersymmetric standard model, JHEP 09 (2000) 031 [hep-ph/0008192] [INSPIRE].
  33. [33]
    S. Chang, P.J. Fox and N. Weiner, Visible cascade Higgs decays to four photons at hadron colliders, Phys. Rev. Lett. 98 (2007) 111802 [hep-ph/0608310] [INSPIRE].
  34. [34]
    P. Draper and D. McKeen, Diphotons from tetraphotons in the decay of a 125 GeV Higgs at the LHC, Phys. Rev. D 85 (2012) 115023 [arXiv:1204.1061] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    CMS collaboration, Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states, Phys. Lett. B 726 (2013) 564 [arXiv:1210.7619] [INSPIRE].
  37. [37]
    CMS collaboration, Search for Higgs decays to new light bosons in boosted τ final states, CMS-PAS-HIG-14-022 (2014).
  38. [38]
    CMS collaboration, Search for exotic decays of the Higgs boson to a pair of new light bosons with two muon and two b jets in final states, CMS-PAS-HIG-14-041 (2014).
  39. [39]
    ATLAS collaboration, Search for new phenomena in events with at least three photons collected in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 210 [arXiv:1509.05051] [INSPIRE].
  40. [40]
    CMS collaboration, Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into τ leptons in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2016) 079 [arXiv:1510.06534] [INSPIRE].
  41. [41]
    CMS collaboration, A search for beyond standard model light bosons decaying into muon pairs, CMS-PAS-HIG-16-035 (2016).
  42. [42]
    CMS collaboration, Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 10 (2017) 076 [arXiv:1701.02032] [INSPIRE].
  43. [43]
    CMS collaboration, Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons, Phys. Lett. B 759 (2016) 369 [arXiv:1603.02991] [INSPIRE].
  44. [44]
    ATLAS collaboration, Search for new light gauge bosons in Higgs boson decays to four-lepton final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, Phys. Rev. D 92 (2015) 092001 [arXiv:1505.07645] [INSPIRE].
  45. [45]
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Bauer, M. Neubert and A. Thamm, LHC as an axion factory: probing an axion explanation for (g − 2)μ with exotic Higgs decays, Phys. Rev. Lett. 119 (2017) 031802 [arXiv:1704.08207] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Bauer, M. Neubert and A. Thamm, The “forgotten” decay SZ + h as a CP analyzer, arXiv:1607.01016 [INSPIRE].
  48. [48]
    M. Bauer, M. Neubert and A. Thamm, Analyzing the CP nature of a new scalar particle via SZh decay, Phys. Rev. Lett. 117 (2016) 181801 [arXiv:1610.00009] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    N. Toro and I. Yavin, Multiphotons and photon jets from new heavy vector bosons, Phys. Rev. D 86 (2012) 055005 [arXiv:1202.6377] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J.P. Chou, D. Curtin and H.J. Lubatti, New detectors to explore the lifetime frontier, Phys. Lett. B 767 (2017) 29 [arXiv:1606.06298] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. Curtin and M.E. Peskin, Analysis of long lived particle decays with the MATHUSLA detector, arXiv:1705.06327 [INSPIRE].
  52. [52]
    H. Georgi, D.B. Kaplan and L. Randall, Manifesting the Invisible Axion at Low-energies, Phys. Lett. B 169 (1986) 73.ADSCrossRefGoogle Scholar
  53. [53]
    M. Bauer, C. Hörner and M. Neubert, Diphoton resonance from a warped extra dimension, JHEP 07 (2016) 094 [arXiv:1603.05978] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Chala, G. Durieux, C. Grojean, L. de Lima and O. Matsedonskyi, Minimally extended SILH, JHEP 06 (2017) 088 [arXiv:1703.10624] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    W.A. Bardeen, S.H.H. Tye and J.A.M. Vermaseren, Phenomenology of the new light Higgs boson search, Phys. Lett. B 76 (1978) 580.ADSCrossRefGoogle Scholar
  56. [56]
    P. Di Vecchia and G. Veneziano, Chiral dynamics in the large-N limit, Nucl. Phys. B 171 (1980) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    M. Bauer, M. Neubert and A. Thamm, Flavor and low-energy probes of axion-like particles, in preparation.Google Scholar
  58. [58]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  59. [59]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    W.A. Bardeen, R.D. Peccei and T. Yanagida, Constraints on variant axion models, Nucl. Phys. B 279 (1987) 401 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S.A. Larin, The Renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].
  62. [62]
    E.C. Poggio, H.R. Quinn and S. Weinberg, Smearing the quark model, Phys. Rev. D 13 (1976) 1958 [INSPIRE].ADSGoogle Scholar
  63. [63]
    M.A. Shifman, Quark hadron duality, in At the frontier of particle physics, M. Shifman ed., World Scientific, Singapore (2001), hep-ph/0009131 [INSPIRE].
  64. [64]
    L. Calibbi and G. Signorelli, Charged lepton flavour violation: an experimental and theoretical introduction, arXiv:1709.00294 [INSPIRE].
  65. [65]
    D. Cadamuro and J. Redondo, Cosmological bounds on pseudo Nambu-Goldstone bosons, JCAP 02 (2012) 032 [arXiv:1110.2895] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Millea, L. Knox and B. Fields, New bounds for axions and axion-like particles with keV-GeV masses, Phys. Rev. D 92 (2015) 023010 [arXiv:1501.04097] [INSPIRE].ADSGoogle Scholar
  67. [67]
    G.G. Raffelt, Astrophysical axion bounds diminished by screening effects, Phys. Rev. D 33 (1986) 897 [INSPIRE].ADSGoogle Scholar
  68. [68]
    G.G. Raffelt and D.S.P. Dearborn, Bounds on hadronic axions from stellar evolution, Phys. Rev. D 36 (1987) 2211 [INSPIRE].ADSGoogle Scholar
  69. [69]
    G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008) 51 [hep-ph/0611350] [INSPIRE].
  70. [70]
    A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi and A. Ringwald, Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles, JCAP 02 (2015) 006 [arXiv:1410.3747] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Jaeckel, P.C. Malta and J. Redondo, Decay photons from the ALP burst of type-II supernovae, arXiv:1702.02964 [INSPIRE].
  72. [72]
    Y. Inoue, Y. Akimoto, R. Ohta, T. Mizumoto, A. Yamamoto and M. Minowa, Search for solar axions with mass around 1 eV using coherent conversion of axions into photons, Phys. Lett. B 668 (2008) 93 [arXiv:0806.2230] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    CAST collaboration, E. Arik et al., Probing eV-scale axions with CAST, JCAP 02 (2009) 008 [arXiv:0810.4482] [INSPIRE].
  74. [74]
    P.W. Graham et al., Experimental searches for the axion and axion-like particles, Ann. Rev. Nucl. Part. Sci. 65 (2015) 485 [arXiv:1602.00039] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    J.D. Bjorken et al., Search for neutral metastable penetrating particles produced in the SLAC beam dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].ADSGoogle Scholar
  77. [77]
    CLEO collaboration, R. Balest et al., Y(1s) → γ + noninteracting particles, Phys. Rev. D 51 (1995) 2053 [INSPIRE].
  78. [78]
    BaBar collaboration, P. del Amo Sanchez et al., Search for production of invisible final states in single-photon decays of Y(1S), Phys. Rev. Lett. 107 (2011) 021804 [arXiv:1007.4646] [INSPIRE].
  79. [79]
    ATLAS collaboration, Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC, Nature Phys. 13 (2017) 852 [arXiv:1702.01625] [INSPIRE].
  80. [80]
    E. Armengaud et al., Axion searches with the EDELWEISS-II experiment, JCAP 11 (2013) 067 [arXiv:1307.1488] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering new light states at neutrino experiments, Phys. Rev. D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].ADSGoogle Scholar
  82. [82]
    H. Merkel et al., Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g − 2 anomaly, Phys. Rev. Lett. 112 (2014) 221802 [arXiv:1404.5502] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    BaBar collaboration, J.P. Lees et al., Search for a dark photon in e + e collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  84. [84]
    Y.-S. Liu and G.A. Miller, Validity of the Weizsäcker-Williams approximation and the analysis of beam dump experiments: Production of an axion, a dark photon, or a new axial-vector boson, Phys. Rev. D 96 (2017) 016004 [arXiv:1705.01633] [INSPIRE].ADSGoogle Scholar
  85. [85]
    BaBar collaboration, J.P. Lees et al., Search for a muonic dark force at BABAR, Phys. Rev. D 94 (2016) 011102 [arXiv:1606.03501] [INSPIRE].
  86. [86]
    Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  87. [87]
    M. Davier, Update of the hadronic vacuum polarisation contribution to the muon g − 2, Nucl. Part. Phys. Proc. 287-288 (2017) 70 [arXiv:1612.02743] [INSPIRE].CrossRefGoogle Scholar
  88. [88]
    F. Jegerlehner, Muon g − 2 theory: the hadronic part, arXiv:1705.00263 [INSPIRE].
  89. [89]
    J.P. Leveille, The second order weak correction to (g − 2) of the muon in arbitrary gauge models, Nucl. Phys. B 137 (1978) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    H.E. Haber, G.L. Kane and T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, Phys. Lett. B 726 (2013) 587 [arXiv:1307.5515] [INSPIRE].
  92. [92]
    ATLAS collaboration, Search for Higgs boson decays to a photon and a Z boson in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS detector, Phys. Lett. B 732 (2014) 8 [arXiv:1402.3051] [INSPIRE].
  93. [93]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  94. [94]
    T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].
  95. [95]
    M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].
  96. [96]
    A. Dedes and D. Karamitros, Doublet-triplet fermionic dark matter, Phys. Rev. D 89 (2014) 115002 [arXiv:1403.7744] [INSPIRE].ADSGoogle Scholar
  97. [97]
    A. Freitas, S. Westhoff and J. Zupan, Integrating in the Higgs portal to fermion dark matter, JHEP 09 (2015) 015 [arXiv:1506.04149] [INSPIRE].CrossRefGoogle Scholar
  98. [98]
    A. Pierce, J. Thaler and L.-T. Wang, Disentangling dimension six operators through di-Higgs boson production, JHEP 05 (2007) 070 [hep-ph/0609049] [INSPIRE].
  99. [99]
    ATLAS and CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  100. [100]
    ATLAS collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016 (2014).
  101. [101]
    ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP 11 (2015) 206 [arXiv:1509.00672] [INSPIRE].
  102. [102]
    CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s}=7 \) , 8 and 13 TeV, JHEP 02 (2017) 135 [arXiv:1610.09218] [INSPIRE].
  103. [103]
    ATLAS collaboration, Search for a Higgs boson decaying to four photons through light CP-odd scalar coupling using 4.0 fb −1 of 7 TeV pp collision data taken with ATLAS detector at the LHC, ATLAS-CONF-2012-079 (2012).
  104. [104]
    M. Gonzalez-Alonso and G. Isidori, The h → 4l spectrum at low m 34 : standard model vs. light new physics, Phys. Lett. B 733 (2014) 359 [arXiv:1403.2648] [INSPIRE].
  105. [105]
    M. Chala, M. Duerr, F. Kahlhoefer and K. Schmidt-Hoberg, Tricking Landau-Yang: how to obtain the diphoton excess from a vector resonance, Phys. Lett. B 755 (2016) 145 [arXiv:1512.06833] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    ATLAS collaboration, Search for Higgs bosons decaying to aa in the μμττ final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, Phys. Rev. D 92 (2015) 052002 [arXiv:1505.01609] [INSPIRE].
  107. [107]
    ATLAS collaboration, Search for the Higgs boson produced in association with a W boson and decaying to four b-quarks via two spin-zero particles in pp collisions at 13 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 605 [arXiv:1606.08391] [INSPIRE].
  108. [108]
    C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    TLEP Design Study Working Group collaboration, M. Bicer et al., First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  110. [110]
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  111. [111]
    L3 collaboration, M. Acciarri et al., Search for anomalous Z → γγγ events at LEP, Phys. Lett. B 345 (1995) 609 [INSPIRE].
  112. [112]
    DELPHI collaboration, P. Abreu et al., Measurement of the e + e → γγ(γ) cross-section at LEP energies, Phys. Lett. B 327 (1994) 386 [INSPIRE].
  113. [113]
    CDF collaboration, T.A. Aaltonen et al., First search for exotic Z boson decays into photons and neutral pions in hadron collisions, Phys. Rev. Lett. 112 (2014) 111803 [arXiv:1311.3282] [INSPIRE].
  114. [114]
    OPAL collaboration, P.D. Acton et al., A measurement of photon radiation in lepton pair events from Z 0 decays, Phys. Lett. B 273 (1991) 338 [INSPIRE].
  115. [115]
    ATLAS collaboration, Measurement of W ± and Z-boson production cross sections in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 759 (2016) 601 [arXiv:1603.09222] [INSPIRE].
  116. [116]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  117. [117]
    M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading U.S.A. (1995).Google Scholar
  118. [118]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  119. [119]
    OPAL collaboration, G. Abbiendi et al., Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189 GeV to 209 GeV at LEP, Eur. Phys. J. C 33 (2004) 173 [hep-ex/0309053] [INSPIRE].
  120. [120]
    P. Janot, Direct measurement of α QED(m Z2) at the FCC-ee, JHEP 02 (2016) 053 [Erratum ibid. 11 (2017) 164] [arXiv:1512.05544] [INSPIRE].
  121. [121]
    J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, JHEP 12 (2016) 135 [arXiv:1608.01509] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    M.A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev. D 57 (1998) 1531 [hep-ph/9706235] [INSPIRE].
  124. [124]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Counting 4π’s in strongly coupled supersymmetry, Phys. Lett. B 412 (1997) 301 [hep-ph/9706275] [INSPIRE].
  125. [125]
    F. Feruglio, The chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].
  126. [126]
    C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, JHEP 10 (2013) 160 [arXiv:1306.4655] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) pp.1-316 [arXiv:1506.01961] [INSPIRE].CrossRefzbMATHGoogle Scholar
  128. [128]
    K. Fujikawa, Path integral measure for gauge invariant fermion theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    K. Fujikawa, Path integral for gauge theories with fermions, Phys. Rev. D 21 (1980) 2848 [Erratum ibid. D 22 (1980) 1499] [INSPIRE].
  130. [130]
    L.M. Krauss and M.B. Wise, Constraints on shortlived axions from the decay π +e + e e + neutrino, Phys. Lett. B 176 (1986) 483 [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    R. Horsley et al., Isospin splittings of meson and baryon masses from three-flavor lattice QCD + QED, J. Phys. G 43 (2016) 10LT02 [arXiv:1508.06401] [INSPIRE].
  132. [132]
    MILC collaboration, S. Basak et al., Electromagnetic effects on the light hadron spectrum, J. Phys. Conf. Ser. 640 (2015) 012052 [arXiv:1510.04997] [INSPIRE].
  133. [133]
    M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, QCD factorization for exclusive, nonleptonic B meson decays: General arguments and the case of heavy light final states, Nucl. Phys. B 591 (2000) 313 [hep-ph/0006124] [INSPIRE].
  134. [134]
    R. Kaiser and H. Leutwyler, Large-N c in chiral perturbation theory, Eur. Phys. J. C 17 (2000) 623 [hep-ph/0007101] [INSPIRE].
  135. [135]
    S. Knapen, T. Lin, H.K. Lou and T. Melia, LHC limits on axion-like particles from heavy-ion collisions, arXiv:1709.07110.
  136. [136]
    M.J. Dolan et al., Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, arXiv:1709.00009u.

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  2. 2.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany
  3. 3.Department of Physics & LEPPCornell UniversityIthacaU.S.A.

Personalised recommendations