Journal of High Energy Physics

, 2016:98 | Cite as

Top-quark pair production at next-to-next-to-leading order QCD in electron positron collisions

  • Long Chen
  • Oliver Dekkers
  • Dennis Heisler
  • Werner BernreutherEmail author
  • Zong-Guo Si
Open Access
Regular Article - Theoretical Physics


We set up a formalism, within the antenna subtraction framework, for computing the production of a massive quark-antiquark pair in electron positron collisions at next-to-next-to-leading order in the coupling α s of quantum chromodynamics at the differential level. Our formalism applies to the calculation of any infrared-safe observable. We apply this set-up to the production of top-quark top antiquark pairs in the continuum. We compute the production cross section and several distributions. We determine, in particular, the top-quark forward-backward asymmetry at order α s 2 . Our result agrees with previous computations of this observable.


NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ECFA/DESY LC Physics Working Group collaboration, J.A. Aguilar-Saavedra et al., TESLA: The superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e + e linear collider, hep-ph/0106315 [INSPIRE].
  2. [2]
    H. Baer et al., The International Linear Collider Technical Design Report — Volume 2: Physics, arXiv:1306.6352 [INSPIRE].
  3. [3]
    TLEP Design Study Working Group collaboration, M. Bicer et al., First Look at the Physics Case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  4. [4]
    A. Arbey et al., Physics at the e + e Linear Collider, Eur. Phys. J. C 75 (2015) 371 [arXiv:1504.01726] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Vos et al., Top physics at high-energy lepton colliders, arXiv:1604.08122 [INSPIRE].
  6. [6]
    M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum and M. Steinhauser, Next-to-Next-to-Next-to-Leading Order QCD Prediction for the Top Antitop S-Wave Pair Production Cross section Near Threshold in e + e Annihilation, Phys. Rev. Lett. 115 (2015) 192001 [arXiv:1506.06864] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Jersak, E. Laermann and P.M. Zerwas, Electroweak Production of Heavy Quarks in e + e Annihilation, Phys. Rev. D 25 (1982) 1218 [Erratum ibid. D 36 (1987) 310] [INSPIRE].
  8. [8]
    W. Bernreuther, A. Brandenburg and P. Uwer, Next-to-leading order QCD corrections to three jet cross-sections with massive quarks, Phys. Rev. Lett. 79 (1997) 189 [hep-ph/9703305] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Brandenburg and P. Uwer, Next-to-leading order QCD corrections and massive quarks in e + e three jets, Nucl. Phys. B 515 (1998) 279 [hep-ph/9708350] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Rodrigo, A. Santamaria and M.S. Bilenky, Do the quark masses run? Extracting \( {\overline{m}}_b\left({m}_Z\right) \) from LEP data, Phys. Rev. Lett. 79 (1997) 193 [hep-ph/9703358] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Rodrigo, M.S. Bilenky and A. Santamaria, Quark mass effects for jet production in e + e collisions at the next-to-leading order: Results and applications, Nucl. Phys. B 554 (1999) 257 [hep-ph/9905276] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Nason and C. Oleari, Next-to-leading order corrections to momentum correlations in \( {Z}^0\to b\overline{b} \), Phys. Lett. B 407 (1997) 57 [hep-ph/9705295] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Nason and C. Oleari, Next-to-leading order corrections to the production of heavy flavor jets in e + e collisions, Nucl. Phys. B 521 (1998) 237 [hep-ph/9709360] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    W. Beenakker, S.C. van der Marck and W. Hollik, e + e annihilation into heavy fermion pairs at high-energy colliders, Nucl. Phys. B 365 (1991) 24 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Fleischer, A. Leike, T. Riemann and A. Werthenbach, Electroweak one loop corrections for e + e annihilation into \( t\overline{t} \) including hard bremsstrahlung, Eur. Phys. J. C 31 (2003) 37 [hep-ph/0302259] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Hahn, W. Hollik, A. Lorca, T. Riemann and A. Werthenbach, O(α) electroweak corrections to the processes e + e τ τ + , \( c\overline{c},b\overline{b},t\overline{t} \) : A comparison, hep-ph/0307132 [INSPIRE].
  17. [17]
    P.H. Khiem et al., Full \( \mathcal{O}\left(\alpha \right) \) electroweak radiative corrections to \( {e}^{+}{e}^{-}\to t\overline{t}\gamma \) with GRACE-Loop, Eur. Phys. J. C 73 (2013) 2400 [arXiv:1211.1112] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B. Chokoufé Nejad, W. Kilian, J.M. Lindert, S. Pozzorini, J. Reuter and C. Weiss, NLO QCD Predictions for off-shell \( t\overline{t} \) and \( t\overline{t}H \) Production and Decay at a Linear Collider, arXiv:1609.03390 [INSPIRE].
  19. [19]
    S.G. Gorishnii, A.L. Kataev and S.A. Larin, Three Loop Corrections of Order O(M 2) to the Correlator of Electromagnetic Quark Currents, Nuovo Cim. A 92 (1986) 119 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, Three loop polarization function and O(α S2) corrections to the production of heavy quarks, Nucl. Phys. B 482 (1996) 213 [hep-ph/9606230] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.G. Chetyrkin, R. Harlander, J.H. Kuhn and M. Steinhauser, Mass corrections to the vector current correlator, Nucl. Phys. B 503 (1997) 339 [hep-ph/9704222] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K.G. Chetyrkin, A.H. Hoang, J.H. Kuhn, M. Steinhauser and T. Teubner, Massive quark production in electron positron annihilation to order O(α S2), Eur. Phys. J. C 2 (1998) 137 [hep-ph/9711327] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Kiyo, A. Maier, P. Maierhofer and P. Marquard, Reconstruction of heavy quark current correlators at O(α S2), Nucl. Phys. B 823 (2009) 269 [arXiv:0907.2120] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    O. Dekkers and W. Bernreuther, The real-virtual antenna functions for \( S\to Q\overline{Q}X \) at NNLO QCD, Phys. Lett. B 738 (2014) 325 [arXiv:1409.3124] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Gao and H.X. Zhu, Electroweak prodution of top-quark pairs in e + e annihilation at NNLO in QCD: the vector contributions, Phys. Rev. D 90 (2014) 114022 [arXiv:1408.5150] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Gao and H.X. Zhu, Top Quark Forward-Backward Asymmetry in e + e Annihilation at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 113 (2014) 262001 [arXiv:1410.3165] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].ADSGoogle Scholar
  28. [28]
    D.A. Kosower, Antenna factorization in strongly ordered limits, Phys. Rev. D 71 (2005) 045016 [hep-ph/0311272] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Currie, E.W.N. Glover and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Gehrmann-De Ridder and M. Ritzmann, NLO Antenna Subtraction with Massive Fermions, JHEP 07 (2009) 041 [arXiv:0904.3297] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP 04 (2011) 063 [arXiv:1102.2443] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections to \( t\overline{t} \) production at the LHC: the all-fermion processes, JHEP 04 (2012) 076 [arXiv:1112.4736] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Abelof, O. Dekkers and A. Gehrmann-De Ridder, Antenna subtraction with massive fermions at NNLO: Double real initial-final configurations, JHEP 12 (2012) 107 [arXiv:1210.5059] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Abelof, A. Gehrmann-De Ridder, P. Maierhofer and S. Pozzorini, NNLO QCD subtraction for top-antitop production in the \( q\overline{q} \) channel, JHEP 08 (2014) 035 [arXiv:1404.6493] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G. Abelof and A. Gehrmann-De Ridder, Light fermionic NNLO QCD corrections to top-antitop production in the quark-antiquark channel, JHEP 12 (2014) 076 [arXiv:1409.3148] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Abelof, A. Gehrmann-De Ridder and I. Majer, Top quark pair production at NNLO in the quark-antiquark channel, JHEP 12 (2015) 074 [arXiv:1506.04037] [INSPIRE].ADSGoogle Scholar
  38. [38]
    W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna function for \( S\to Q\overline{Q}q\overline{q} \) at NNLO QCD, JHEP 06 (2011) 032 [arXiv:1105.0530] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna functions for \( S\to Q\overline{Q} gg \) at NNLO QCD, JHEP 10 (2013) 161 [arXiv:1309.6887] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross section at Hadron Colliders Through \( O\left(\alpha \frac{4}{S}\right) \), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Gao, C.S. Li and H.X. Zhu, Top Quark Decay at Next-to-Next-to Leading Order in QCD, Phys. Rev. Lett. 110 (2013) 042001 [arXiv:1210.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. von Manteuffel, R.M. Schabinger and H.X. Zhu, The two-loop soft function for heavy quark pair production at future linear colliders, Phys. Rev. D 92 (2015) 045034 [arXiv:1408.5134] [INSPIRE].ADSGoogle Scholar
  46. [46]
    G. Abelof and A. Gehrmann-De Ridder, private communication.Google Scholar
  47. [47]
    S. Weinzierl, NNLO corrections to 2-jet observables in electron-positron annihilation, Phys. Rev. D 74 (2006) 014020 [hep-ph/0606008] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Infrared structure of e + e 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    E.W. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].CrossRefzbMATHGoogle Scholar
  50. [50]
    K. Hagiwara, T. Kuruma and Y. Yamada, Three jet distributions from the one loop Zgg vertex at e + e colliders, Nucl. Phys. B 358 (1991) 80 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: The Vector contributions, Nucl. Phys. B 706 (2005) 245 [hep-ph/0406046] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: Axial vector contributions, Nucl. Phys. B 712 (2005) 229 [hep-ph/0412259] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber and E. Remiddi, Two-loop QCD corrections to the heavy quark form-factors: Anomaly contributions, Nucl. Phys. B 723 (2005) 91 [hep-ph/0504190] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    J. Gluza, A. Mitov, S. Moch and T. Riemann, The QCD form factor of heavy quarks at NNLO, JHEP 07 (2009) 001 [arXiv:0905.1137] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  56. [56]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun. 141 (2001) 296 [hep-ph/0107173] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    J. Blumlein, Structural Relations of Harmonic Sums and Mellin Transforms up to Weight w = 5, Comput. Phys. Commun. 180 (2009) 2218 [arXiv:0901.3106] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    J. Ablinger, J. Blumlein and C. Schneider, Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    J. Ablinger, J. Blümlein and C. Schneider, Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    A. Czarnecki and K. Melnikov, Two loop QCD corrections to the heavy quark pair production cross-section in e + e annihilation near the threshold, Phys. Rev. Lett. 80 (1998) 2531 [hep-ph/9712222] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Beneke, A. Signer and V.A. Smirnov, Two loop correction to the leptonic decay of quarkonium, Phys. Rev. Lett. 80 (1998) 2535 [hep-ph/9712302] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A.H. Hoang, Two loop corrections to the electromagnetic vertex for energies close to threshold, Phys. Rev. D 56 (1997) 7276 [hep-ph/9703404] [INSPIRE].ADSGoogle Scholar
  65. [65]
    W. Bernreuther et al., Two-Parton Contribution to the Heavy-Quark Forward-Backward Asymmetry in NNLO QCD, Nucl. Phys. B 750 (2006) 83 [hep-ph/0604031] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J. Jersak, E. Laermann and P.M. Zerwas, QCD Corrected Forward Backward Asymmetry of Quark Jets in e + e Annihilation, Phys. Lett. 98B (1981) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A.B. Arbuzov, D. Yu. Bardin and A. Leike, Analytic final state corrections with cut for e + e massive fermions, Mod. Phys. Lett. A 7 (1992) 2029 [Erratum ibid. A 9 (1994) 1515] [INSPIRE].
  68. [68]
    A. Djouadi, B. Lampe and P.M. Zerwas, A note on the QCD corrections to forward-backward asymmetries of heavy quark jets in Z decays, Z. Phys. C 67 (1995) 123 [hep-ph/9411386] [INSPIRE].ADSGoogle Scholar
  69. [69]
    D.Y. Bardin, et al., ZFITTER v.6.21: A semianalytical program for fermion pair production in e + e annihilation, Comput. Phys. Commun. 133 (2001) 229 [hep-ph/9908433] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    G. Altarelli and B. Lampe, Second order QCD corrections to heavy quark forward-backward asymmetries, Nucl. Phys. B 391 (1993) 3 [INSPIRE].ADSGoogle Scholar
  71. [71]
    V. Ravindran and W.L. van Neerven, Second order QCD corrections to the forward-backward asymmetry in e + e collisions, Phys. Lett. B 445 (1998) 214 [hep-ph/9809411] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    S. Catani and M.H. Seymour, Corrections of O(α S2) to the forward backward asymmetry, JHEP 07 (1999) 023 [hep-ph/9905424] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S. Weinzierl, The forward-backward asymmetry at NNLO revisited, Phys. Lett. B 644 (2007) 331 [hep-ph/0609021] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    K. Waninger, Die Vorwärts-Rückwärts-Asymmetrie für schwere Quarks zur Ordnung α s2, Ph.D. Thesis, RWTH Aachen University, Germany (2011).Google Scholar
  75. [75]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  76. [76]
    R. Kleiss, W.J. Stirling and S.D. Ellis, A New Monte Carlo Treatment of Multiparticle Phase Space at High-energies, Comput. Phys. Commun. 40 (1986) 359 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    E. Devetak, A. Nomerotski and M. Peskin, Top quark anomalous couplings at the International Linear Collider, Phys. Rev. D 84 (2011) 034029 [arXiv:1005.1756] [INSPIRE].ADSGoogle Scholar
  78. [78]
    R. Röntsch and M. Schulze, Probing top-Z dipole moments at the LHC and ILC, JHEP 08 (2015) 044 [arXiv:1501.05939] [INSPIRE].CrossRefGoogle Scholar
  79. [79]
    P.H. Khiem, E. Kou, Y. Kurihara and F. Le Diberder, Probing New Physics using top quark polarization in the \( {e}^{+}{e}^{-}\to t\overline{t} \) process at future Linear Colliders, arXiv:1503.04247 [INSPIRE].
  80. [80]
    P. Janot, Top-quark electroweak couplings at the FCC-ee, JHEP 04 (2015) 182 [arXiv:1503.01325] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M.S. Amjad et al., A precise characterisation of the top quark electro-weak vertices at the ILC, Eur. Phys. J. C 75 (2015) 512 [arXiv:1505.06020] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Long Chen
    • 1
  • Oliver Dekkers
    • 2
  • Dennis Heisler
    • 1
  • Werner Bernreuther
    • 1
    Email author
  • Zong-Guo Si
    • 3
  1. 1.Institut für Theoretische Teilchenphysik und KosmologieRWTH Aachen UniversityAachenGermany
  2. 2.PRISMA Cluster of Excellence and Institut für PhysikJohannes-Gutenberg-Universität MainzMainzGermany
  3. 3.School of PhysicsShandong UniversityJinanChina

Personalised recommendations