One-loop effective actions and higher spins

Abstract

The idea we advocate in this paper is that the one-loop effective action of a free (massive) field theory coupled to external sources (via conserved currents) contains complete information about the classical dynamics of such sources. We show many explicit examples of this fact for (scalar and fermion) free field theories in various dimensions d = 3,4,5,6 coupled to (bosonic, completely symmetric) sources with a number of spins. In some cases we also provide compact formulas for any dimension. This paper is devoted to two-point correlators, so the one-loop effective action we construct contains only the quadratic terms and the relevant equations of motion for the sources we obtain are the linearized ones.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    L. Bonora, M. Cvitan, P. Dominis Prester, B. Lima de Souza and I. Smolić, Massive fermion model in 3d and higher spin currents, JHEP 05 (2016) 072 [arXiv:1602.07178] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    E.E. Boos and A.I. Davydychev, A method of evaluating massive Feynman integrals, Theor. Math. Phys. 89 (1991) 1052 [Teor. Mat. Fiz. 89 (1991) 56] [INSPIRE].

  3. [3]

    A.I. Davydychev, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett. B 263 (1991) 107 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    A.I. Davydychev, Recursive algorithm of evaluating vertex type Feynman integrals, J. Phys. A 25 (1992) 5587 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. [5]

    C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    J. Fang and C. Fronsdal, Massless fields with half integral spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    T. Curtright, Massless field supermultiplets with arbitrary spin, Phys. Lett. B 85 (1979) 219 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin 1. The boson case, Phys. Rev. D 9 (1974) 898 [INSPIRE].

  9. [9]

    L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin 2. The fermion case, Phys. Rev. D 9 (1974) 910 [INSPIRE].

  10. [10]

    D. Francia and A. Sagnotti, On the geometry of higher spin gauge fields, Class. Quant. Grav. 20 (2003) S473 [Comment. Phys. Math. Soc. Sci. Fenn. 166 (2004) 165] [PoS(JHW2003)005] [hep-th/0212185] [INSPIRE].

  11. [11]

    D. Francia and A. Sagnotti, Free geometric equations for higher spins, Phys. Lett. B 543 (2002) 303 [hep-th/0207002] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09 (2011) 045 [arXiv:1104.2846] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  13. [13]

    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    M.A. Vasiliev, Properties of equations of motion of interacting gauge fields of all spins in (3 + 1)-dimensions, Class. Quant. Grav. 8 (1991) 1387 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    M.A. Vasiliev, Algebraic aspects of the higher spin problem, Phys. Lett. B 257 (1991) 111 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    Higher-spin gauge theories, in Proceedings of the First Solvay Workshop, held in Brussels on May 12-14 2004, R. Argurio, G. Barnich, G. Bonelli and M. Grigoriev eds., Int. Solvay Institutes, Belgium (2006).

  19. [19]

    D. Sorokin, Introduction to the classical theory of higher spins, AIP Conf. Proc. 767 (2005) 172 [hep-th/0405069] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    D. Francia and A. Sagnotti, Higher-spin geometry and string theory, J. Phys. Conf. Ser. 33 (2006) 57 [hep-th/0601199] [INSPIRE].

    Article  Google Scholar 

  21. [21]

    A. Fotopoulos and M. Tsulaia, Gauge invariant lagrangians for free and interacting higher spin fields. A review of the BRST formulation, Int. J. Mod. Phys. A 24 (2009) 1 [arXiv:0805.1346] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    C. Iazeolla, On the algebraic structure of higher-spin field equations and new exact solutions, arXiv:0807.0406 [INSPIRE].

  23. [23]

    A. Campoleoni, Metric-like lagrangian formulations for higher-spin fields of mixed symmetry, Riv. Nuovo Cim. 33 (2010) 123 [arXiv:0910.3155] [INSPIRE].

    Google Scholar 

  24. [24]

    A. Sagnotti, Higher spins and current exchanges, PoS(CORFU2011)106 [arXiv:1002.3388] [INSPIRE].

  25. [25]

    D. Francia, Low-spin models for higher-spin lagrangians, Prog. Theor. Phys. Suppl. 188 (2011) 94 [arXiv:1103.0683] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  26. [26]

    A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040 [Dokl. Akad. Nauk Ser. Fiz. 177 (1967) 70] [Sov. Phys. Usp. 34 (1991) 394] [Gen. Rel. Grav. 32 (2000) 365] [INSPIRE].

  27. [27]

    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  28. [28]

    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    A. Campoleoni, Higher spins in D = 2 + 1, Subnucl. Ser. 49 (2013) 385 [arXiv:1110.5841] [INSPIRE].

    MATH  Google Scholar 

  30. [30]

    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons contact terms in three dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    S. Giombi, S. Prakash and X. Yin, A note on CFT correlators in three dimensions, JHEP 07 (2013) 105 [arXiv:1104.4317] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    C.N. Pope and P.K. Townsend, Conformal higher spin in (2 + 1)-dimensions, Phys. Lett. B 225 (1989) 245 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    M.P. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    B. de Wit and D.Z. Freedman, Systematics of higher spin gauge fields, Phys. Rev. D 21 (1980) 358 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. [36]

    T. Damour and S. Deser, ‘Geometry’ of spin 3 gauge theories, Ann. Inst. H. Poincaré Phys. Theor. 47 (1987) 277 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  37. [37]

    R. Jackiw and S. Templeton, How superrenormalizable interactions cure their infrared divergences, Phys. Rev. D 23 (1981) 2291 [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    I. Vuorio, Parity violation and the effective gravitational action in three-dimensions, Phys. Lett. B 175 (1986) 176 [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    T. Appelquist, M.J. Bowick, E. Cohler and L.C.R. Wijewardhana, Chiral symmetry breaking in (2 + 1)-dimensions, Phys. Rev. Lett. 55 (1985) 1715 [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    T.W. Appelquist, M.J. Bowick, D. Karabali and L.C.R. Wijewardhana, Spontaneous chiral symmetry breaking in three-dimensional QED, Phys. Rev. D 33 (1986) 3704 [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    T. Appelquist, M.J. Bowick, D. Karabali and L.C.R. Wijewardhana, Spontaneous breaking of parity in (2 + 1)-dimensional QED, Phys. Rev. D 33 (1986) 3774 [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    K.S. Babu, A.K. Das and P. Panigrahi, Derivative expansion and the induced Chern-Simons term at finite temperature in (2 + 1)-dimensions, Phys. Rev. D 36 (1987) 3725 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  43. [43]

    R. Delbourgo and A.B. Waites, Induced parity violation in odd dimensions, Austral. J. Phys. 47 (1994) 465 [hep-th/9404164] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    G.V. Dunne, Aspects of Chern-Simons theory, hep-th/9902115 [INSPIRE].

  45. [45]

    F.S. Gama, J.R. Nascimento and A. Yu. Petrov, Derivative expansion and the induced Chern-Simons term in N = 1, D = 3 superspace, Phys. Rev. D 93 (2016) 045015 [arXiv:1511.05471] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. [46]

    X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02 (2011) 048 [arXiv:1012.2103] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. [47]

    D. Francia, J. Mourad and A. Sagnotti, Current exchanges and unconstrained higher spins, Nucl. Phys. B 773 (2007) 203 [hep-th/0701163] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. [48]

    D. Francia, On the relation between local and geometric lagrangians for higher spins, J. Phys. Conf. Ser. 222 (2010) 012002 [arXiv:1001.3854] [INSPIRE].

    Article  Google Scholar 

  49. [49]

    L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari, B. Lima de Souza and T. Štemberga, Massive Dirac field in 3D and induced equations for higher spin fields, in Group31 Proceedings, to appear, Rio de Janeiro Brazil (2016).

  50. [50]

    L. Bonora and B. Lima de Souza, Pure contact term correlators in CFT, arXiv:1511.06635 [INSPIRE].

  51. [51]

    L. Bonora, S. Giaccari and B. Lima de Souza, Trace anomalies in chiral theories revisited, JHEP 07 (2014) 117 [arXiv:1403.2606] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  52. [52]

    L. Bonora, S. Giaccari and B.L.D. Souza, Revisiting trace anomalies in chiral theories, Springer Proc. Math. Stat. 111 (2014) 3 [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  53. [53]

    L. Bonora, A.D. Pereira and B. Lima de Souza, Regularization of energy-momentum tensor correlators and parity-odd terms, JHEP 06 (2015) 024 [arXiv:1503.03326] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    B.L. de Souza, DavyFeyn: a mathematica package for automated analytical Feynman diagram computations webpage, https://github.com/blimasouza/DavyFeyn.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Bonora.

Additional information

ArXiv ePrint: 1609.02088

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonora, L., Cvitan, M., Prester, P.D. et al. One-loop effective actions and higher spins. J. High Energ. Phys. 2016, 84 (2016). https://doi.org/10.1007/JHEP12(2016)084

Download citation

Keywords

  • Higher Spin Gravity
  • Higher Spin Symmetry
  • Renormalization Group