Advertisement

Journal of High Energy Physics

, 2016:75 | Cite as

NLO QCD predictions for off-shell \( t\overline{t} \) and \( t\overline{t}H \) production and decay at a linear collider

  • Bijan Chokoufé Nejad
  • Wolfgang Kilian
  • Jonas M. Lindert
  • Stefano Pozzorini
  • Jürgen Reuter
  • Christian Weiss
Open Access
Regular Article - Theoretical Physics

Abstract

We present predictions for \( t\overline{t} \) and \( t\overline{t}H \) production and decay at future lepton colliders including non-resonant and interference contributions up to next-to-leading order (NLO) in perturbative QCD. The obtained precision predictions are necessary for a future precise determination of the top-quark Yukawa coupling, and allow for top-quark phenomenology in the continuum at an unprecedented level of accuracy. Simulations are performed with the automated NLO Monte-Carlo framework Whizard interfaced to the OpenLoops matrix element generator.

Keywords

NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker and A. Riotto, The Probable Fate of the Standard Model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner and O.L. Veretin, Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision, Phys. Rev. Lett. 115 (2015) 201802 [arXiv:1507.08833] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Baer et al., The International Linear Collider Technical Design Report — Volume 2: Physics, arXiv:1306.6352 [INSPIRE].
  5. [5]
    H. Abramowicz et al., The International Linear Collider Technical Design Report — Volume 4: Detectors, arXiv:1306.6329 [INSPIRE].
  6. [6]
    L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts, Physics and Detectors at CLIC: CLIC Conceptual Design Report, arXiv:1202.5940 [INSPIRE].
  7. [7]
    A.H. Hoang and T. Teubner, Top-quark pair production close to threshold: Top-quark mass, width, and momentum distribution, Phys. Rev. D 60 (1999) 114027 [hep-ph/9904468].
  8. [8]
    M. Beneke, A quark mass definition adequate for threshold problems, Phys. Lett. B 434 (1998) 115 [hep-ph/9804241].
  9. [9]
    K. Seidel, F. Simon, M. Tesar and S. Poss, Top quark mass measurements at and above threshold at CLIC, Eur. Phys. J. C 73 (2013) 2530 [arXiv:1303.3758] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Horiguchi et al., Study of top quark pair production near threshold at the ILC, arXiv:1310.0563 [INSPIRE].
  11. [11]
    F. Simon, A First Look at the Impact of NNNLO Theory Uncertainties on Top Mass Measurements at the ILC, arXiv:1603.04764 [INSPIRE].
  12. [12]
    Top Quark Working Group collaboration, K. Agashe et al., Working Group Report: Top Quark, arXiv:1311.2028 [INSPIRE].
  13. [13]
    T. Price, P. Roloff, J. Strube and T. Tanabe, Full simulation study of the top Yukawa coupling at the ILC at \( \sqrt{s}=1 \) TeV, Eur. Phys. J. C 75 (2015) 309 [arXiv:1409.7157] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Vos et al., Top physics at high-energy lepton colliders, arXiv:1604.08122 [INSPIRE].
  15. [15]
    Y. Kiyo, A. Maier, P. Maierhofer and P. Marquard, Reconstruction of heavy quark current correlators at O(α s3), Nucl. Phys. B 823 (2009) 269 [arXiv:0907.2120] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    J. Gao and H.X. Zhu, Top Quark Forward-Backward Asymmetry in e + e Annihilation at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 113 (2014) 262001 [arXiv:1410.3165] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Fleischer, A. Leike, T. Riemann and A. Werthenbach, Electroweak one loop corrections for e+ e- annihilation into t anti-top including hard bremsstrahlung, Eur. Phys. J. C 31 (2003) 37 [hep-ph/0302259] [INSPIRE].
  18. [18]
    S. Dittmaier, M. Kramer, Y. Liao, M. Spira and P.M. Zerwas, Higgs radiation off top quarks in e+ e- collisions, Phys. Lett. B 441 (1998) 383 [hep-ph/9808433] [INSPIRE].
  19. [19]
    G. Belanger et al., Full O(alpha) electroweak and O(alpha(s)) corrections to \( {e}^{+}{e}^{-}\to t\overline{t}H \), Phys. Lett. B 571 (2003) 163 [hep-ph/0307029] [INSPIRE].
  20. [20]
    A. Denner, S. Dittmaier, M. Roth and M. Weber, Radiative corrections to Higgs-boson production in association with top-quark pairs at e + e colliders, Nucl. Phys. B 680 (2004) 85 [hep-ph/0309274] [INSPIRE].
  21. [21]
    J. Fuster, I. García, P. Gomis, M. Perelló, E. Ros and M. Vos, Study of single top production at high energy electron positron colliders, Eur. Phys. J. C 75 (2015) 223 [arXiv:1411.2355] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C.R. Schmidt, Top Quark Production and Decay at Next-to-leading Order in e + e Annihilation, Phys. Rev. 54 (1996) 3250 [hep-ph/9504434] [INSPIRE].
  23. [23]
    A. Denner et al., Electroweak corrections to charged-current e + e 4 fermion processes: Technical detail results, Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042] [INSPIRE].
  24. [24]
    L. Guo, W.-G. Ma, R.-Y. Zhang and S.-M. Wang, One-loop QCD corrections to the \( {e}^{+}{e}^{-}\to {W}^{+}{W}^{-}b\overline{b} \) process at the ILC, Phys. Lett. B 662 (2008) 150 [arXiv:0802.4124] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Liebler, G. Moortgat-Pick and A.S. Papanastasiou, Probing the top-quark width through ratios of resonance contributions of \( {e}^{+}{e}^{-}\to {W}^{+}{W}^{-}b\overline{b} \), JHEP 03 (2016) 099 [arXiv:1511.02350] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    W. Kilian, T. Ohl and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Moretti, T. Ohl and J. Reuter, O’Mega: An Optimizing Matrix Element Generator, LC-TOOL-2001-040 (2001) [hep-ph/0102195] [INSPIRE].
  28. [28]
    G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders, JHEP 10 (2012) 110 [arXiv:1207.5018] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G. Heinrich, A. Maier, R. Nisius, J. Schlenk and J. Winter, NLO QCD corrections to \( {W}^{+}{W}^{-}b\overline{b} \) production with leptonic decays in the light of top quark mass and asymmetry measurements, JHEP 06 (2014) 158 [arXiv:1312.6659] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Frederix, Top Quark Induced Backgrounds to Higgs Production in the W W (∗)llνν Decay Channel at Next-to-Leading-Order in QCD, Phys. Rev. Lett. 112 (2014) 082002 [arXiv:1311.4893] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    F. Cascioli, S. Kallweit, P. Maierhöfer and S. Pozzorini, A unified NLO description of top-pair and associated Wt production, Eur. Phys. J. C 74 (2014) 2783 [arXiv:1312.0546] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Denner and M. Pellen, NLO electroweak corrections to off-shell top-antitop production with leptonic decays at the LHC, JHEP 08 (2016) 155 [arXiv:1607.05571] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Ježo and P. Nason, On the Treatment of Resonances in Next-to-Leading Order Calculations Matched to a Parton Shower, JHEP 12 (2015) 065 [arXiv:1509.09071] [INSPIRE].ADSGoogle Scholar
  36. [36]
    T. Ježo, J.M. Lindert, P. Nason, C. Oleari and S. Pozzorini, An NLO+PS generator for \( t\overline{t} \) and W t production and decay including non-resonant and interference effects, arXiv:1607.04538 [INSPIRE].
  37. [37]
    A. Denner and R. Feger, NLO QCD corrections to off-shell top-antitop production with leptonic decays in association with a Higgs boson at the LHC, JHEP 11 (2015) 209 [arXiv:1506.07448] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Bevilacqua, H.B. Hartanto, M. Kraus and M. Worek, Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider, Phys. Rev. Lett. 116 (2016) 052003 [arXiv:1509.09242] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    G. Bevilacqua, H.B. Hartanto, M. Kraus and M. Worek, Off-shell Top Quarks with One Jet at the LHC: A comprehensive analysis at NLO QCD, arXiv:1609.01659 [INSPIRE].
  40. [40]
    T. Binoth, N. Greiner, A. Guffanti, J. Reuter, J.P. Guillet and T. Reiter, Next-to-leading order QCD corrections to \( pp\to b\overline{b}b\overline{b}+X \) at the LHC: the quark induced case, Phys. Lett. B 685 (2010) 293 [arXiv:0910.4379] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    N. Greiner, A. Guffanti, T. Reiter and J. Reuter, NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC, Phys. Rev. Lett. 107 (2011) 102002 [arXiv:1105.3624] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    W. Kilian, J. Reuter and T. Robens, NLO event generation for chargino production at the ILC, Eur. Phys. J. C 48 (2006) 389 [hep-ph/0607127].
  43. [43]
    T. Robens, J. Kalinowski, K. Rolbiecki, W. Kilian and J. Reuter, (N)LO Simulation of Chargino Production and Decay, Acta Phys. Polon. B 39 (2008) 1705 [arXiv:0803.4161] [INSPIRE].
  44. [44]
    A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: A Proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  47. [47]
    S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, arXiv:1605.01090 [INSPIRE].
  49. [49]
    V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  50. [50]
    G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  53. [53]
    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
  54. [54]
    F. Bach and M. Stahlhofen, Top pair threshold production at a linear collider with WHIZARD, arXiv:1411.7318 [INSPIRE].
  55. [55]
    A.H. Hoang et al., Top-anti-top pair production close to threshold: Synopsis of recent NNLO results, Eur. Phys. J.direct C 3 (2000) 1 [hep-ph/0001286].
  56. [56]
    M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum and M. Steinhauser, Next-to-Next-to-Next-to-Leading Order QCD Prediction for the Top Antitop S-Wave Pair Production Cross Section Near Threshold in e + e Annihilation, Phys. Rev. Lett. 115 (2015) 192001 [arXiv:1506.06864] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A.H. Hoang and M. Stahlhofen, The Top-Antitop Threshold at the ILC: NNLL QCD Uncertainties, JHEP 05 (2014) 121 [arXiv:1309.6323] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Reuter, F. Bach, B. Chokoufe Nejad, W. Kilian, M. Stahlhofen and C. Weiss, QCD NLO with Powheg matching and top threshold matching in WHIZARD, PoS(RADCOR2015)088 [arXiv:1601.02459] [INSPIRE].
  59. [59]
    J. Reuter et al., Top Physics in WHIZARD, arXiv:1602.08035 [INSPIRE].
  60. [60]
    B. Chokoufe et al., Matching the NLL threshold resummation with fixed-order QCD corrections in top-pair production at lepton colliders, to be published.Google Scholar
  61. [61]
    N.D. Christensen, C. Duhr, B. Fuks, J. Reuter and C. Speckner, Introducing an interface between WHIZARD and FeynRules, Eur. Phys. J. C 72 (2012) 1990 [arXiv:1010.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond factorization, Comput. Phys. Commun. 120 (1999) 13 [hep-ph/9806432] [INSPIRE].
  63. [63]
    T. Ohl, circe Version 1.02: beam spectra for simulating linear collider physics, Comput. Phys. Commun. 101 (1997) 269 [hep-ph/9607454] [INSPIRE].
  64. [64]
    R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun. 83 (1994) 141 [hep-ph/9405257v2] [INSPIRE].
  65. [65]
    G. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys. 27 (1978) 192.ADSCrossRefMATHGoogle Scholar
  66. [66]
    W. Kilian, J. Reuter, S. Schmidt and D. Wiesler, An Analytic Initial-State Parton Shower, JHEP 04 (2012) 013 [arXiv:1112.1039] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    W. Kilian, T. Ohl, J. Reuter and C. Speckner, QCD in the Color-Flow Representation, JHEP 10 (2012) 022 [arXiv:1206.3700] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Frixione, Z. Kunszt and A. Signer, Three-jet cross sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328].
  69. [69]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    C. Weiss, B. Chokoufe Nejad, W. Kilian and J. Reuter, Automated NLO QCD Corrections with WHIZARD, PoS(EPS-HEP2015)466 [arXiv:1510.02666] [INSPIRE].
  71. [71]
    M. Dobbs and J.B. Hansen, The HepMC C++ Monte Carlo event record for High Energy Physics, Comput. Phys. Commun. 134 (2001) 41 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    B. Chokoufe Nejad, W. Kilian, J. Reuter and C. Weiss, Matching NLO QCD Corrections in WHIZARD with the POWHEG scheme, PoS(EPS-HEP2015)317 [arXiv:1510.02739] [INSPIRE].
  74. [74]
    P. Nason, A New Method for Combining NLO QCD with Shower Monte Carlo Algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
  75. [75]
    F. Cascioli, J. Lindert, P. Maierhöfer and S. Pozzorini, OpenLoops one-loop generator, publicly available at http://openloops.hepforge.org.
  76. [76]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    G. Ossola, C. G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  78. [78]
    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  79. [79]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, arXiv:1604.06792 [INSPIRE].
  80. [80]
    A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].
  81. [81]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].
  82. [82]
    A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  83. [83]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP 02 (2007) 013 [hep-ph/0609054] [INSPIRE].
  85. [85]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \( t\overline{t}b\overline{b} \) production at the LHC: 1. Quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [INSPIRE].
  86. [86]
    P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman Rules for the Rational Part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes, JHEP 01 (2010) 040 [Erratum ibid. 1010 (2010) 097] [arXiv:0910.3130] [INSPIRE].
  88. [88]
    M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes in the R x i gauge and in the Unitary gauge, JHEP 01 (2011) 029 [arXiv:1009.4302] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  89. [89]
    M.V. Garzelli and I. Malamos, R2SM: A Package for the analytic computation of the R 2 Rational terms in the Standard Model of the Electroweak interactions, Eur. Phys. J. C 71 (2011) 1605 [arXiv:1010.1248] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Feynman Rules for the Rational Part of the Standard Model One-loop Amplitudes in the ’t Hooft-Veltman γ 5 Scheme, JHEP 09 (2011) 048 [arXiv:1106.5030] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  91. [91]
    S. Alioli et al., Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 185 (2014) 560 [arXiv:1308.3462] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  92. [92]
    S. Catani and M. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [INSPIRE].
  93. [93]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  94. [94]
    A. Denner and J.-N. Lang, The Complex-Mass Scheme and Unitarity in perturbative Quantum Field Theory, Eur. Phys. J. C 75 (2015) 377 [arXiv:1406.6280] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  96. [96]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    M. Jezabek and J.H. Kuhn, Semileptonic Decays of Top Quarks, Phys. Lett. B 207 (1988) 91 [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    M. Jezabek and J.H. Kuhn, Lepton Spectra from Heavy Quark Decay, Nucl. Phys. B 320 (1989) 20 [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    M. Jezabek and J.H. Kuhn, QCD Corrections to Semileptonic Decays of Heavy Quarks, Nucl. Phys. B 314 (1989) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trocsanyi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].
  101. [101]
    P. Roloff and J. Strube, Measurement of the top Yukawa Coupling at a 1 TeV International Linear Collider using the SiD detector, arXiv:1307.7644 [INSPIRE].
  102. [102]
    M.S. Amjad et al., A precise determination of top quark electro-weak couplings at the ILC operating at \( \sqrt{s}=500 \) GeV, arXiv:1307.8102 [INSPIRE].
  103. [103]
    M.S. Amjad et al., A precise characterisation of the top quark electro-weak vertices at the ILC, Eur. Phys. J. C 75 (2015) 512 [arXiv:1505.06020] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    T. Barklow et al., ILC Operating Scenarios, arXiv:1506.07830 [INSPIRE].
  105. [105]
    R. Frederix, S. Frixione, A.S. Papanastasiou, S. Prestel and P. Torrielli, Off-shell single-top production at NLO matched to parton showers, JHEP 06 (2016) 027 [arXiv:1603.01178] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    M. Kraus, NLO QCD off-shell effects for top pair production with a jet in the dilepton channel, arXiv:1608.05296 [INSPIRE].
  107. [107]
    A. Kharchilava, Top mass determination in leptonic final states with J/ψ, Phys. Lett. B 476 (2000) 73 [hep-ph/9912320] [INSPIRE].
  108. [108]
    M. Beneke et al., Top quark physics, in 1999 CERN Workshop on standard model physics (and more) at the LHC, CERN, Geneva Switzerland (2000) [hep-ph/0003033] [INSPIRE].
  109. [109]
    S. Biswas, K. Melnikov and M. Schulze, Next-to-leading order QCD effects and the top quark mass measurements at the LHC, JHEP 08 (2010) 048 [arXiv:1006.0910] [INSPIRE].ADSMATHGoogle Scholar
  110. [110]
    W. Bernreuther et al., Two-Parton Contribution to the Heavy-Quark Forward-Backward Asymmetry in NNLO QCD, Nucl. Phys. B 750 (2006) 83 [hep-ph/0604031] [INSPIRE].
  111. [111]
    F. Richard, Present and future constraints on top EW couplings, arXiv:1403.2893 [INSPIRE].
  112. [112]
    CDF collaboration, T. Aaltonen et al., Forward-Backward Asymmetry in Top Quark Production in \( p\overline{p} \) Collisions at sqrts = 1.96 TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [INSPIRE].
  113. [113]
    CDF collaboration, T. Aaltonen et al., Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].
  114. [114]
    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].
  115. [115]
    M. Czakon, P. Fiedler and A. Mitov, Resolving the Tevatron Top Quark Forward-Backward Asymmetry Puzzle: Fully Differential Next-to-Next-to-Leading-Order Calculation, Phys. Rev. Lett. 115 (2015) 052001 [arXiv:1411.3007] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].ADSGoogle Scholar
  117. [117]
    I. Garcia, E. Ros, J. Trenado and M. Vos, The potential of the tt charge asymmetry measurement at a Linear Collider with \( \sqrt{s} \) in the range 500 GeV-1 TeV, in Helmholtz Alliance Linear Collider Forum: Proceedings of the Workshops Hamburg, Munich, Hamburg 2010-2012, DESY, Hamburg Germany (2013), pg. 93.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Bijan Chokoufé Nejad
    • 1
  • Wolfgang Kilian
    • 2
  • Jonas M. Lindert
    • 3
  • Stefano Pozzorini
    • 3
  • Jürgen Reuter
    • 1
  • Christian Weiss
    • 1
    • 2
  1. 1.Theory Group, DESYHamburgGermany
  2. 2.Emmy-Noether-CampusSiegenGermany
  3. 3.Physik-InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations