Advertisement

Journal of High Energy Physics

, 2016:72 | Cite as

Invariants for minimal conformal supergravity in six dimensions

  • Daniel Butter
  • Sergei M. Kuzenko
  • Joseph NovakEmail author
  • Stefan Theisen
Open Access
Regular Article - Theoretical Physics

Abstract

We develop a new off-shell formulation for six-dimensional conformal super-gravity obtained by gauging the 6D \( \mathcal{N} \) = (1, 0) superconformal algebra in superspace. This formulation is employed to construct two invariants for 6D \( \mathcal{N} \) = (1, 0) conformal super-gravity, which contain C 3 and CC terms at the component level. Using a conformal supercurrent analysis, we prove that these exhaust all such invariants in minimal conformal supergravity. Finally, we show how to construct the supersymmetric FF invariant in curved superspace.

Keywords

Conformal Field Theory Supergravity Models Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    E.A. Ivanov, A.V. Smilga and B.M. Zupnik, Renormalizable supersymmetric gauge theory in six dimensions, Nucl. Phys. B 726 (2005) 131 [hep-th/0505082] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett. B 390 (1997) 169 [hep-th/9609161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].
  6. [6]
    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    E. Witten, Five-branes and M-theory on an orbifold, Nucl. Phys. B 463 (1996) 383 [hep-th/9512219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    J.D. Blum and K.A. Intriligator, New phases of string theory and 6d RG fixed points via branes at orbifold singularities, Nucl. Phys. B 506 (1997) 199 [hep-th/9705044] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 1506 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  12. [12]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    L. Bonora, P. Pasti and M. Tonin, Cohomologies and Anomalies in Supersymmetric Theories, Nucl. Phys. B 252 (1985) 458 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    I.L. Buchbinder and S.M. Kuzenko, Matter Superfields in External Supergravity: Green Functions, Effective Action and Superconformal Anomalies, Nucl. Phys. B 274 (1986) 653 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S.M. Kuzenko, Super-Weyl anomalies in N = 2 supergravity and (non)local effective actions, JHEP 10 (2013) 151 [arXiv:1307.7586] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of Superconformal Theories, JHEP 11 (2016) 135 [arXiv:1602.01217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    J. Louis and S. Lüst, Supersymmetric AdS 7 backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs, JHEP 10 (2015) 120 [arXiv:1506.08040] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for M-theory five-branes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J.A. Harvey, R. Minasian and G.W. Moore, NonAbelian tensor multiplet anomalies, JHEP 09 (1998) 004 [hep-th/9808060] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N = (2, 0) field theories, Nucl. Phys. B 581 (2000) 257 [hep-th/0001205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    P. Yi, Anomaly of (2,0) theories, Phys. Rev. D 64 (2001) 106006 [hep-th/0106165] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].
  27. [27]
    C. Cordova, T.T. Dumitrescu and X. Yin, Higher Derivative Terms, Toroidal Compactification and Weyl Anomalies in Six-Dimensional (2, 0) Theories, arXiv:1505.03850 [INSPIRE].
  28. [28]
    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal Tensor Calculus and Matter Couplings in Six-dimensions, Nucl. Phys. B 264 (1986) 653 [Erratum ibid. B 598 (2001) 667] [INSPIRE].
  30. [30]
    B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation Rules of N = 2 Supergravity Multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    M. de Roo, J.W. van Holten, B. de Wit and A. Van Proeyen, Chiral Superfields in N = 2 Supergravity, Nucl. Phys. B 173 (1980) 175 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl. Phys. B 184 (1981) 77 [Erratum ibid. B 222 (1983) 516] [INSPIRE].
  33. [33]
    B. de Wit, R. Philippe and A. Van Proeyen, The Improved Tensor Multiplet in N = 2 Supergravity, Nucl. Phys. B 219 (1983) 143 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    B. de Wit, P.G. Lauwers, R. Philippe, S.Q. Su and A. Van Proeyen, Gauge and Matter Fields Coupled to N = 2 Supergravity, Phys. Lett. B 134 (1984) 37 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity-Matter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012).CrossRefzbMATHGoogle Scholar
  37. [37]
    E. Bergshoeff, A. Salam and E. Sezgin, A Supersymmetric R 2 Action in Six-dimensions and Torsion, Phys. Lett. B 173 (1986) 73 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    E. Bergshoeff, A. Salam and E. Sezgin, Supersymmetric R 2 Actions, Conformal Invariance and Lorentz Chern-Simons Term in Six-dimensions and Ten-dimensions, Nucl. Phys. B 279 (1987) 659 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E. Bergshoeff and M. Rakowski, An Off-shell Superspace R 2 Action in Six-dimensions, Phys. Lett. B 191 (1987) 399 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    F. Coomans and A. Van Proeyen, Off-shell N = (1, 0), D = 6 supergravity from superconformal methods, JHEP 02 (2011) 049 [Erratum ibid. 1201 (2012) 119] [arXiv:1101.2403] [INSPIRE].
  41. [41]
    E. Bergshoeff, F. Coomans, E. Sezgin and A. Van Proeyen, Higher Derivative Extension of 6D Chiral Gauged Supergravity, JHEP 07 (2012) 011 [arXiv:1203.2975] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nucl. Phys. B 505 (1997) 497 [hep-th/9703075] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    S. Ferrara, F. Riccioni and A. Sagnotti, Tensor and vector multiplets in six-dimensional supergravity, Nucl. Phys. B 519 (1998) 115 [hep-th/9711059] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Salam and E. Sezgin, Chiral Compactification on Minkowski ×S 2 of N = 2 Einstein-Maxwell Supergravity in Six-Dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    H. Nishino and E. Sezgin, Matter and Gauge Couplings of N = 2 Supergravity in Six-Dimensions, Phys. Lett. B 144 (1984) 187 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    A. Van Proeyen, Superconformal symmetry and higher-derivative Lagrangians, Springer Proc. Phys. 153 (2014) 1 [arXiv:1306.2169] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    P.S. Howe, A superspace approach to extended conformal supergravity, Phys. Lett. B 100 (1981) 389 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    P.S. Howe, Supergravity in Superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity, JHEP 04 (2008) 032 [arXiv:0802.3953] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    W.D. Linch, III and G. Tartaglino-Mazzucchelli, Six-dimensional Supergravity and Projective Superfields, JHEP 08 (2012) 075 [arXiv:1204.4195] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    P.S. Howe, J.M. Izquierdo, G. Papadopoulos and P.K. Townsend, New supergravities with central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 467 (1996) 183 [hep-th/9505032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    D. Butter, N = 1 Conformal Superspace in Four Dimensions, Annals Phys. 325 (2010) 1026 [arXiv:0906.4399] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    D. Butter, N = 2 Conformal Superspace in Four Dimensions, JHEP 10 (2011) 030 [arXiv:1103.5914] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: New off-shell formulation, JHEP 09 (2013) 072 [arXiv:1305.3132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in five dimensions: New approach and applications, JHEP 02 (2015) 111 [arXiv:1410.8682] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, Conformal invariance In harmonic superspace, in I.A. Batalin et al. eds., Quantum Field Theory and Quantum Statistics, Vol. 2, pg. 233-248, and Dubna JINR-E-2-85-363 (1985).Google Scholar
  58. [58]
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E. Sokatchev, N = 2 Supergravity in Superspace: Different Versions and Matter Couplings, Class. Quant. Grav. 4 (1987) 1255.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    J.A. Bagger, A.S. Galperin, E.A. Ivanov and V.I. Ogievetsky, Gauging N = 2σ Models in Harmonic Superspace, Nucl. Phys. B 303 (1988) 522 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic Superspace, Cambridge University Press, Cambridge, U.K. (2001).CrossRefzbMATHGoogle Scholar
  61. [61]
    A.S. Galperin, N.A. Ky and E. Sokatchev, N = 2 supergravity in superspace: solution to the constraints and the invariant action, Class. Quant. Grav. 4 (1987) 1235.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    D. Butter, On conformal supergravity and harmonic superspace, JHEP 03 (2016) 107 [arXiv:1508.07718] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, 5D Supergravity and Projective Superspace, JHEP 02 (2008) 004 [arXiv:0712.3102] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    S.M. Kuzenko, On compactified harmonic/projective superspace, 5 − D superconformal theories and all that, Nucl. Phys. B 745 (2006) 176 [hep-th/0601177] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    S.M. Kuzenko, On superconformal projective hypermultiplets, JHEP 12 (2007) 010 [arXiv:0710.1479] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    A. Karlhede, U. Lindström and M. Roček, Selfinteracting Tensor Multiplets in N = 2 Superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    U. Lindström and M. Roček, New HyperKähler Metrics and New Supermultiplets, Commun. Math. Phys. 115 (1988) 21 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  68. [68]
    U. Lindström and M. Roček, N = 2 Super Yang-Mills Theory in Projective Superspace, Commun. Math. Phys. 128 (1990) 191 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    S.M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, 4D N = 2 Supergravity and Projective Superspace, JHEP 09 (2008) 051 [arXiv:0805.4683] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    S.M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, On conformal supergravity and projective superspace, JHEP 08 (2009) 023 [arXiv:0905.0063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    J. Grundberg and U. Lindström, Actions for linear multiplets in six dimensions, Class. Quant. Grav. 2 (1985) L33.ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    D. Butter and J. Novak, Component reduction in N = 2 supergravity: the vector, tensor and vector-tensor multiplets, JHEP 05 (2012) 115 [arXiv:1201.5431] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    D. Butter, Projective multiplets and hyperkähler cones in conformal supergravity, JHEP 06 (2015) 161 [arXiv:1410.3604] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: Off-shell actions, JHEP 10 (2013) 073 [arXiv:1306.1205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, N=6 superconformal gravity in three dimensions from superspace, JHEP 01 (2014) 121 [arXiv:1308.5552] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    D. Butter, B. de Wit, S.M. Kuzenko and I. Lodato, New higher-derivative invariants in N = 2 supergravity and the Gauss-Bonnet term, JHEP 12 (2013) 062 [arXiv:1307.6546] [INSPIRE].
  77. [77]
    M. Müller, Consistent Classical Supergravity Theories, Lect. Notes Phys. 336 (1989).Google Scholar
  78. [78]
    S.M. Kuzenko, On N = 2 supergravity and projective superspace: Dual formulations, Nucl. Phys. B 810 (2009) 135 [arXiv:0807.3381] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Different representations for the action principle in 4D N = 2 supergravity, JHEP 04 (2009) 007 [arXiv:0812.3464] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    E. Sokatchev, Off-shell six-dimensional supergravity in harmonic superspace, Class. Quant. Grav. 5 (1988) 1459.ADSMathSciNetCrossRefGoogle Scholar
  81. [81]
    L. Bonora, P. Pasti and M. Bregola, Weyl cocycles, Class. Quant. Grav. 3 (1986) 635.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    D.R. Karakhanian, R.P. Manvelyan and R.L. Mkrtchian, Trace anomalies and cocycles of Weyl and diffeomorphism groups, Mod. Phys. Lett. A 11 (1996) 409 [hep-th/9411068] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    V. Wünsch, Some new conformal covariants, J. Anal. Appl. 19 (2000) 339.MathSciNetzbMATHGoogle Scholar
  84. [84]
    J.-H. Park, Superconformal symmetry in six-dimensions and its reduction to four-dimensions, Nucl. Phys. B 539 (1999) 599 [hep-th/9807186] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    W. Siegel, Superfields in Higher Dimensional Space-time, Phys. Lett. B 80 (1979) 220 [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    B.E.W. Nilsson, Superspace Action for a Six-dimensional Nonextended Supersymmetric Yang-Mills Theory, Nucl. Phys. B 174 (1980) 335 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J. Wess, Supersymmetric gauge theories, in proceedings of the 5th Johns Hopkins Workshop on Current Problems in Particle Theory: Unified Field Theories and Beyond, Baltimore, Maryland U.S.A., 25-27 May 1981, http://ccdb5fs.kek.jp/cgi-bin/img index?198109099.
  88. [88]
    P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in Six-Dimensions, Nucl. Phys. B 221 (1983) 331 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Higher derivative couplings and massive supergravity in three dimensions, JHEP 09 (2015) 081 [arXiv:1506.09063] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  90. [90]
    P.S. Howe, K.S. Stelle and P.C. West, N = 1, d = 6 harmonic superspace, Class. Quant. Grav. 2 (1985) 815.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    B.M. Zupnik, Six-dimensional Supergauge Theories in the Harmonic Superspace, Sov. J. Nucl. Phys. 44 (1986) 512 [Yad. Fiz. 44 (1986) 794] [INSPIRE].
  92. [92]
    A.S. Galperin, E.A. Ivanov, S.N. Kalitzin, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469.ADSMathSciNetCrossRefGoogle Scholar
  93. [93]
    C. Arias, W.D. Linch, III and A.K. Ridgway, Superforms in six-dimensional superspace, JHEP 05 (2016) 016 [arXiv:1402.4823] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  94. [94]
    M.F. Sohnius, K.S. Stelle and P.C. West, Representations of extended supersymmetry, in Superspace and Supergravity, S. W. Hawking and M. Roček eds., Cambridge University Press, Cambridge, U.K. (1981).Google Scholar
  95. [95]
    M.F. Hasler, The three form multiplet in N = 2 superspace, Eur. Phys. J. C 1 (1998) 729 [hep-th/9606076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    S.J. Gates, Jr., Ectoplasm has no topology: The prelude, hep-th/9709104 [INSPIRE].
  97. [97]
    S.J. Gates, Jr., M.T. Grisaru, M.E. Knutt-Wehlau and W. Siegel, Component actions from curved superspace: Normal coordinates and ectoplasm, Phys. Lett. B 421 (1998) 203 [hep-th/9711151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    L. Castellani, R. D’Auria and P. Fre, Supergravity and superstrings: A geometric perspective. Vol. 2: Supergravity, World Scientific, Singapore, (1991), pp. 680-684.Google Scholar
  99. [99]
    P.S. Howe and E. Sezgin, Anomaly free tensor Yang-Mills system and its dual formulation, Phys. Lett. B 440 (1998) 50 [hep-th/9806050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  100. [100]
    S.M. Kuzenko, J. Novak and I.B. Samsonov, The anomalous current multiplet in 6D minimal supersymmetry, JHEP 02 (2016) 132 [arXiv:1511.06582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  101. [101]
    S.J. Gates, Jr., S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Chiral supergravity actions and superforms, Phys. Rev. D 80 (2009) 125015 [arXiv:0909.3918] [INSPIRE].ADSGoogle Scholar
  102. [102]
    M. Müller, Off-shell supergravity actions, Preprint MPI-PAE/PTh 64/89, Munich, Germaby (1989).Google Scholar
  103. [103]
    D. Butter, S.M. Kuzenko and J. Novak, The linear multiplet and ectoplasm, JHEP 09 (2012) 131 [arXiv:1205.6981] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    S.M. Kuzenko and J. Novak, On supersymmetric Chern-Simons-type theories in five dimensions, JHEP 02 (2014) 096 [arXiv:1309.6803] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    S.M. Kuzenko and J. Novak, Supergravity-matter actions in three dimensions and Chern-Simons terms, JHEP 05 (2014) 093 [arXiv:1401.2307] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  106. [106]
    D. Butter, New approach to curved projective superspace, Phys. Rev. D 92 (2015) 085004 [arXiv:1406.6235] [INSPIRE].ADSMathSciNetGoogle Scholar
  107. [107]
    D. Butter, On conformal supergravity and harmonic superspace, JHEP 03 (2016) 107 [arXiv:1508.07718] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  108. [108]
    J. Novak, Superform formulation for vector-tensor multiplets in conformal supergravity, JHEP 09 (2012) 060 [arXiv:1205.6881] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  109. [109]
    J. Novak, Variant vector-tensor multiplets in supergravity: Classification and component reduction, JHEP 03 (2013) 053 [arXiv:1210.8325] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    M. Beccaria and A.A. Tseytlin, Conformal anomaly c-coefficients of superconformal 6d theories, JHEP 01 (2016) 001 [arXiv:1510.02685] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  111. [111]
    D. Butter, J. Novak and G. Tartaglino-Mazzucchelli, to appear.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Daniel Butter
    • 1
  • Sergei M. Kuzenko
    • 2
  • Joseph Novak
    • 3
    Email author
  • Stefan Theisen
    • 3
  1. 1.Nikhef Theory GroupAmsterdamThe Netherlands
  2. 2.School of Physics M013The University of Western AustraliaCrawleyAustralia
  3. 3.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutGolmGermany

Personalised recommendations