Journal of High Energy Physics

, 2016:68 | Cite as

Search for a lighter Higgs boson in Two Higgs Doublet Models

  • Giacomo Cacciapaglia
  • Aldo DeandreaEmail author
  • Suzanne Gascon-Shotkin
  • Solène Le Corre
  • Morgan Lethuillier
  • Junquan Tao
Open Access
Regular Article - Theoretical Physics


We consider present constraints on Two Higgs Doublet Models, both from the LHC at Run 1 and from other sources in order to explore the possibility of constraining a neutral scalar or pseudo-scalar particle lighter than the 125 GeV Higgs boson. Such a lighter particle is not yet completely excluded by present data. We show with a simplified analysis that some new constraints could be obtained at the LHC if such a search is performed by the experimental collaborations, which we therefore encourage to continue carrying out light diphoton resonance searches at \( \sqrt{s}=13 \) TeV in the context of Two Higgs Doublet Models.


Beyond Standard Model Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020 [arXiv:1201.0019] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S. Chang, S.K. Kang, J.-P. Lee, K.Y. Lee, S.C. Park and J. Song, Comprehensive study of two Higgs doublet model in light of the new boson with mass around 125 GeV, JHEP 05 (2013) 075 [arXiv:1210.3439] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Chang, S.K. Kang, J.-P. Lee, K.Y. Lee, S.C. Park and J. Song, Two Higgs doublet models for the LHC Higgs boson data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 09 (2014) 101 [arXiv:1310.3374] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Searching for a lighter Higgs boson: Parametrization and sample tests, Phys. Rev. D 91 (2015) 015012 [arXiv:1311.5132] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models. II. m H = 125 GeV, Phys. Rev. D 93 (2016) 035027 [arXiv:1511.03682] [INSPIRE].
  9. [9]
    J. Bernon, J.F. Gunion, Y. Jiang and S. Kraml, Light Higgs bosons in Two-Higgs-Doublet Models, Phys. Rev. D 91 (2015) 075019 [arXiv:1412.3385] [INSPIRE].ADSGoogle Scholar
  10. [10]
    U. Ellwanger and M. Rodriguez-Vazquez, Discovery Prospects of a Light Scalar in the NMSSM, JHEP 02 (2016) 096 [arXiv:1512.04281] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    CMS collaboration, Search for new resonances in the diphoton final state in the mass range between 80 and 110 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-14-037 (2015) [INSPIRE].
  12. [12]
    ATLAS collaboration, Search for Scalar Diphoton Resonances in the Mass Range 65-600 GeV with the ATLAS Detector in pp Collision Data at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 113 (2014) 171801 [arXiv:1407.6583] [INSPIRE].
  13. [13]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  15. [15]
    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  17. [17]
    A. Arhrib, R. Benbrik and N. Gaur, Hγγ in Inert Higgs Doublet Model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].ADSGoogle Scholar
  18. [18]
    F. Mahmoudi, SuperIso v2.3: A Program for calculating flavor physics observables in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Mahmoudi, SuperIso: A Program for calculating the isospin asymmetry of BK γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  21. [21]
    T. Hurth, F. Mahmoudi and S. Neshatpour, On the anomalies in the latest LHCb data, Nucl. Phys. B 909 (2016) 737 [arXiv:1603.00865] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    LHCb collaboration, Measurement of the B s0 → μ + μ branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].
  23. [23]
    LHCb and CMS collaborations, Observation of the rare B s0 → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  24. [24]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  25. [25]
    A. Lenz, B-mixing in and beyond the Standard model, arXiv:1409.6963 [INSPIRE].
  26. [26]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].
  28. [28]
    P. Bechtle et al., Recent Developments in HiggsBounds and a Preview of HiggsSignals, PoS(CHARGED 2012)024 [arXiv:1301.2345] [INSPIRE].
  29. [29]
    P. Bechtle et al., HiggsBounds-4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  31. [31]
    J.-B. Flament, Higgs Couplings and BSM Physics: Run I Legacy Constraints, arXiv:1504.07919 [INSPIRE].
  32. [32]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi Bento: Beyond NNLO and the heavy-top limit, in press [Comput. Phys. Commun. (2016)] [arXiv:1605.03190] [INSPIRE].
  33. [33]
    LHC Higgs Cross Section Working Group, J.R. Andersen et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, CERN, Geneva Switzerland (2013) [arXiv:1307.1347] [INSPIRE].
  34. [34]
    G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, Hγγ beyond the Standard Model, JHEP 06 (2009) 054 [arXiv:0901.0927] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings: disentangling New Physics with off-shell measurements, Phys. Rev. Lett. 113 (2014) 201802 [arXiv:1406.1757] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. Harlander, M. Mühlleitner, J. Rathsman, M. Spira and O. Stal, Interim recommendations for the evaluation of Higgs production cross sections and branching ratios at the LHC in the Two-Higgs-Doublet Model, arXiv:1312.5571 [INSPIRE].
  39. [39]
    LEP, DELPHI, OPAL, ALEPH and L3 collaborations, G. Abbiendi et al., Search for Charged Higgs bosons: Combined Results Using LEP Data, Eur. Phys. J. C 73 (2013) 2463 [arXiv:1301.6065] [INSPIRE].
  40. [40]
    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Giacomo Cacciapaglia
    • 1
  • Aldo Deandrea
    • 1
    • 3
    Email author
  • Suzanne Gascon-Shotkin
    • 1
  • Solène Le Corre
    • 1
  • Morgan Lethuillier
    • 1
  • Junquan Tao
    • 2
  1. 1.Univ. Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, UMR5822 IPNLVilleurbanneFrance
  2. 2.Inst. High Energy PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Institut Universitaire de FranceParisFrance

Personalised recommendations