Journal of High Energy Physics

, 2016:45 | Cite as

Light quark Yukawa couplings from Higgs kinematics

  • Yotam Soreq
  • Hua Xing ZhuEmail author
  • Jure Zupan
Open Access
Regular Article - Theoretical Physics


We show that the normalized Higgs production p T and y h distributions are sensitive probes of Higgs couplings to light quarks. For up and/or down quark Yukawa couplings comparable to the SM b quark Yukawa the ūu or \( \overline{d}d \) fusion production of the Higgs could lead to appreciable softer p T distribution than in the SM. The rapidity distribution, on the other hand, becomes more forward. We find that, owing partially to a downward fluctuation, one can derive competitive bounds on the two couplings using ATLAS measurements of normalized p T distribution at 8 TeV. With 300 fb−1 at 13 TeV LHC one could establish flavor non-universality of the Yukawa couplings in the down sector.


Higgs Physics Quark Masses and SM Parameters 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  2. [2]
    Y. Nir, Flavour Physics and CP-violation, in Proceedings, 7th CERN Latin-American School of High-Energy Physics (CLASHEP2013) Arequipa, Peru, March 6-19, 2013, pp. 123-156, doi: 10.5170/CERN-2015-001.123 [arXiv:1605.00433] [INSPIRE].
  3. [3]
    A. Dery, A. Efrati, Y. Hochberg and Y. Nir, What if BR(h → µµ)/BR(h → ττ) ≠ m μ2/m τ2 ?, JHEP 05 (2013) 039 [arXiv:1302.3229] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [arXiv:0804.1753] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Bauer, M. Carena and K. Gemmler, Flavor from the Electroweak Scale, JHEP 11 (2015) 016 [arXiv:1506.01719] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Bauer, M. Carena and K. Gemmler, Creating the Fermion Mass Hierarchies with Multiple Higgs Bosons, [arXiv:1512.03458] [INSPIRE].
  7. [7]
    F. Bishara, J. Brod, P. Uttayarat and J. Zupan, Nonstandard Yukawa Couplings and Higgs Portal Dark Matter, JHEP 01 (2016) 010 [arXiv:1504.04022] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Dery, A. Efrati, Y. Nir, Y. Soreq and V. Susič, Model building for flavor changing Higgs couplings, Phys. Rev. D 90 (2014) 115022 [arXiv:1408.1371] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Ghosh, R.S. Gupta and G. Perez, Is the Higgs Mechanism of Fermion Mass Generation a Fact? A Yukawa-less First-Two-Generation Model, Phys. Lett. B 755 (2016) 504 [arXiv:1508.01501] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, Eur. Phys. J. C 76 (2016) 6 [arXiv:1507.04548] [INSPIRE].
  11. [11]
    CMS collaboration, Search for a standard model-like Higgs boson in the μ + μ and e + e decay channels at the LHC, Phys. Lett. B 744 (2015) 184 [arXiv:1410.6679] [INSPIRE].
  12. [12]
    G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Constraining the charm Yukawa and Higgs-quark coupling universality, Phys. Rev. D 92 (2015) 033016 [arXiv:1503.00290] [INSPIRE].ADSGoogle Scholar
  13. [13]
    W. Altmannshofer, J. Brod and M. Schmaltz, Experimental constraints on the coupling of the Higgs boson to electrons, JHEP 05 (2015) 125 [arXiv:1503.04830] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Prospects for measuring the Higgs boson coupling to light quarks, Phys. Rev. D 93 (2016) 013001 [arXiv:1505.06689] [INSPIRE].ADSGoogle Scholar
  15. [15]
    Y. Zhou, Constraining the Higgs boson coupling to light quarks in the HZZ final states, Phys. Rev. D 93 (2016) 013019 [arXiv:1505.06369] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Arnesen, I.Z. Rothstein and J. Zupan, Smoking Guns for On-Shell New Physics at the LHC, Phys. Rev. Lett. 103 (2009) 151801 [arXiv:0809.1429] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Biekötter, J. Brehmer and T. Plehn, Extending the limits of Higgs effective theory, Phys. Rev. D 94 (2016) 055032 [arXiv:1602.05202] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Brehmer, A. Freitas, D. Lopez-Val and T. Plehn, Pushing Higgs Effective Theory to its Limits, Phys. Rev. D 93 (2016) 075014 [arXiv:1510.03443] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Dawson, I.M. Lewis and M. Zeng, Usefulness of effective field theory for boosted Higgs production, Phys. Rev. D 91 (2015) 074012 [arXiv:1501.04103] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Schlaffer, M. Spannowsky, M. Takeuchi, A. Weiler and C. Wymant, Boosted Higgs Shapes, Eur. Phys. J. C 74 (2014) 3120 [arXiv:1405.4295] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP 05 (2014) 022 [arXiv:1312.3317] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    U. Langenegger, M. Spira and I. Strebel, Testing the Higgs Boson Coupling to Gluons, arXiv:1507.01373 [INSPIRE].
  23. [23]
    J. Bramante, A. Delgado, L. Lehman and A. Martin, Boosted Higgses from chromomagnetic b’s: \( b\overline{b}h \) at high luminosity, Phys. Rev. D 93 (2016) 053001 [arXiv:1410.3484] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Buschmann, C. Englert, D. Goncalves, T. Plehn and M. Spannowsky, Resolving the Higgs-Gluon Coupling with Jets, Phys. Rev. D 90 (2014) 013010 [arXiv:1405.7651] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Azatov and A. Paul, Probing Higgs couplings with high p T Higgs production, JHEP 01 (2014) 014 [arXiv:1309.5273] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Banfi, A. Martin and V. Sanz, Probing top-partners in Higgs+jets, JHEP 08 (2014) 053 [arXiv:1308.4771] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schonherr, F. Krauss and T. Plehn, Mass Effects in the Higgs-Gluon Coupling: Boosted vs Off-Shell Production, JHEP 02 (2015) 038 [arXiv:1410.5806] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Gao, H. Zhang and H.X. Zhu, Diphoton excess at 750 GeV: gluon-gluon fusion or quark-antiquark annihilation?, Eur. Phys. J. C 76 (2016) 348 [arXiv:1512.08478] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C. Csáki, J. Hubisz, S. Lombardo and J. Terning, Gluon versus photon production of a 750 GeV diphoton resonance, Phys. Rev. D 93 (2016) 095020 [arXiv:1601.00638] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Bernon, A. Goudelis, S. Kraml, K. Mawatari and D. Sengupta, Characterising the 750 GeV diphoton excess, JHEP 05 (2016) 128 [arXiv:1603.03421] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M.A. Ebert et al., Exploiting jet binning to identify the initial state of high-mass resonances, Phys. Rev. D 94 (2016) 051901 [arXiv:1605.06114] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Carmona, F. Goertz and A. Papaefstathiou, Uncovering the relation of a di-photon scalar resonance to the Higgs boson, arXiv:1606.02716 [INSPIRE].
  33. [33]
    L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin and M. Spannowsky, Jet activity as a probe of high-mass resonance production, Eur. Phys. J. C 76 (2016) 623 [arXiv:1606.04902] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Melnikov and A. Penin, On the light quark mass effects in Higgs boson production in gluon fusion, JHEP 05 (2016) 172 [arXiv:1602.09020] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    ATLAS collaboration, Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at \( \sqrt{s}=8 \) TeV with ATLAS, JHEP 09 (2014) 112 [arXiv:1407.4222] [INSPIRE].
  36. [36]
    ATLAS collaboration, Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 234 [arXiv:1408.3226] [INSPIRE].
  37. [37]
    ATLAS collaboration, Measurements of the Total and Differential Higgs Boson Production Cross sections Combining the Hγγ and HZZ * → 4ℓ Decay Channels at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 115 (2015) 091801 [arXiv:1504.05833] [INSPIRE].
  38. [38]
    ATLAS collaboration, Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to WW *eνμν with the ATLAS detector at \( \sqrt{s}=8 \) TeV, JHEP 08 (2016) 104 [arXiv:1604.02997] [INSPIRE].
  39. [39]
    CMS collaboration, Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76 (2016) 13 [arXiv:1508.07819] [INSPIRE].
  40. [40]
    CMS collaboration, Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at \( \sqrt{s}=8 \) TeV using H to WW decays, [arXiv:1606.01522] [INSPIRE].
  41. [41]
    G.T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, Higgs boson decays to quarkonia and the \( H\overline{c}c \) coupling, Phys. Rev. D 88 (2013) 053003 [arXiv:1306.5770] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A.L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev and J. Zupan, Exclusive Window onto Higgs Yukawa Couplings, Phys. Rev. Lett. 114 (2015) 101802 [arXiv:1406.1722] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. König and M. Neubert, Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings, JHEP 08 (2015) 012 [arXiv:1505.03870] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    C. Delaunay, R. Ozeri, G. Perez and Y. Soreq, Probing The Atomic Higgs Force, arXiv:1601.05087 [INSPIRE].
  45. [45]
    A. Celis, V. Cirigliano and E. Passemar, Disentangling new physics contributions in lepton flavour violating τ decays, Nucl. Part. Phys. Proc. 273-275 (2016) 1664 [arXiv:1409.4439] [INSPIRE].
  46. [46]
    J. Gao, Differentiating the production mechanisms of the Higgs-like resonance using inclusive observables at hadron colliders, JHEP 02 (2014) 094 [arXiv:1308.5453] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    P.F. Monni, E. Re and P. Torrielli, Higgs Transverse-Momentum Resummation in Direct Space, Phys. Rev. Lett. 116 (2016) 242001 [arXiv:1604.02191] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D. Neill, I.Z. Rothstein and V. Vaidya, The Higgs Transverse Momentum Distribution at NNLL and its Theoretical Errors, JHEP 12 (2015) 097 [arXiv:1503.00005] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M.G. Echevarria, T. Kasemets, P.J. Mulders and C. Pisano, QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q T -distribution, JHEP 07 (2015) 158 [arXiv:1502.05354] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at NNLL′ + NNLO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].ADSGoogle Scholar
  52. [52]
    C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: Differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  58. [58]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar
  64. [64]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    R.V. Harlander, Higgs production in heavy quark annihilation through next-to-next-to-leading order QCD, Eur. Phys. J. C 76 (2016) 252 [arXiv:1512.04901] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi Bento: Beyond NNLO and the heavy-top limit, arXiv:1605.03190 [INSPIRE].
  67. [67]
    F. Bishara, U. Haisch, P.F. Monni and E. Re, Constraining Light-Quark Yukawa Couplings from Higgs Distributions, arXiv:1606.09253 [INSPIRE].
  68. [68]
    C. Delaunay, T. Golling, G. Perez and Y. Soreq, Enhanced Higgs boson coupling to charm pairs, Phys. Rev. D 89 (2014) 033014 [arXiv:1310.7029] [INSPIRE].ADSGoogle Scholar
  69. [69]
    ATLAS collaboration, Performance and Calibration of the JetFitterCharm Algorithm for c-Jet Identification, ATL-PHYS-PUB-2015-001 (2015).
  70. [70]
    I. Brivio, F. Goertz and G. Isidori, Probing the Charm Quark Yukawa Coupling in Higgs+Charm Production, Phys. Rev. Lett. 115 (2015) 211801 [arXiv:1507.02916] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Higgs boson production at the LHC: transverse momentum resummation effects in the H → 2γ, HWWlνlν and HZZ →4l decay modes, JHEP 06 (2012) 132 [arXiv:1203.6321] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    Y. Li and H.X. Zhu, Bootstrapping rapidity anomalous dimension for transverse-momentum resummation, [arXiv:1604.01404] [INSPIRE].
  73. [73]
    F. Caola, S. Forte, S. Marzani, C. Muselli and G. Vita, The Higgs transverse momentum spectrum with finite quark masses beyond leading order, JHEP 08 (2016) 150 [arXiv:1606.04100] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    ATLAS collaboration, Search for the \( b\overline{b} \) decay of the Standard Model Higgs boson in associated (W/Z)H production with the ATLAS detector, JHEP 01 (2015) 069 [arXiv:1409.6212] [INSPIRE].
  75. [75]
    R.V. Harlander, A. Tripathi and M. Wiesemann, Higgs production in bottom quark annihilation: Transverse momentum distribution at NNLO+NNLL, Phys. Rev. D 90 (2014) 015017 [arXiv:1403.7196] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  2. 2.Department of PhysicsUniversity of CincinnatiCincinnatiU.S.A.

Personalised recommendations