Journal of High Energy Physics

, 2016:31 | Cite as

Mordell-Weil torsion in the mirror of multi-sections

  • Paul-Konstantin Oehlmann
  • Jonas Reuter
  • Thorsten Schimannek
Open Access
Regular Article - Theoretical Physics

Abstract

We give further evidence that genus-one fibers with multi-sections are mirror dual to fibers with Mordell-Weil torsion. In the physics of F-theory compactifications this implies a relation between models with a non-simply connected gauge group and those with discrete symmetries. We provide a combinatorial explanation of this phenomenon for toric hypersurfaces. In particular this leads to a criterion to deduce Mordell-Weil torsion directly from the polytope. For all 3134 complete intersection genus-one curves in three-dimensional toric ambient spaces we confirm the conjecture by explicit calculation. We comment on several new features of these models: the Weierstrass forms of many models can be identified by relabeling the coefficient sections. This reduces the number of models to 1024 inequivalent ones. We give an example of a fiber which contains only non-toric sections one of which becomes toric when the fiber is realized in a different ambient space. Similarly a singularity in codimension one can have a toric resolution in one representation while it is non-toric in another. Finally we give a list of 24 inequivalent genus-one fibers that simultaneously exhibit multi-sections and Mordell-Weil torsion in the Jacobian. We discuss a self-mirror example from this list in detail.

Keywords

Differential and Algebraic Geometry F-Theory Global Symmetries String Duality 

References

  1. [1]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds (II), Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    D.R. Morrison and D.S. Park, F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    P.S. Aspinwall and D.R. Morrison, Nonsimply connected gauge groups and rational points on elliptic curves, JHEP 07 (1998) 012 [hep-th/9805206] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Mayrhofer, D.R. Morrison, O. Till and T. Weigand, Mordell-Weil Torsion and the Global Structure of Gauge Groups in F-theory, JHEP 10 (2014) 016 [arXiv:1405.3656] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    V. Braun and D.R. Morrison, F-theory on Genus-One Fibrations, JHEP 08 (2014) 132 [arXiv:1401.7844] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE].
  8. [8]
    C. Mayrhofer, E. Palti, O. Till and T. Weigand, Discrete Gauge Symmetries by Higgsing in four-dimensional F-theory Compactifications, JHEP 12 (2014) 068 [arXiv:1408.6831] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Klevers, D.K. Mayorga Pena, P.-K. Oehlmann, H. Piragua and J. Reuter, F-Theory on all Toric Hypersurface Fibrations and its Higgs Branches, JHEP 01 (2015) 142 [arXiv:1408.4808] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T.W. Grimm, A. Kapfer and D. Klevers, The Arithmetic of Elliptic Fibrations in Gauge Theories on a Circle, JHEP 06 (2016) 112 [arXiv:1510.04281] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Cvetič, R. Donagi, D. Klevers, H. Piragua and M. Poretschkin, F-theory vacua with ℤ 3 gauge symmetry, Nucl. Phys. B 898 (2015) 736 [arXiv:1502.06953] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    L. Bhardwaj, M. Del Zotto, J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, F-theory and the Classification of Little Strings, Phys. Rev. D 93 (2016) 086002 [arXiv:1511.05565] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    W. Stein et al., Sage Mathematics Software (Version 7.1), The Sage Development Team (2016) http://www.sagemath.org.
  15. [15]
    A. Novoseltsev, Lattice polytope module for Sage, The Sage Development Team (2010) http://www.sagemath.org/doc/reference/geometry/sage/geometry/lattice polytope.html.
  16. [16]
    V. Braun and A. Novoseltsev, Toric geometry module for Sage, The Sage Development Team (2013) http://www.sagemath.org/doc/reference/schemes/sage/schemes/toric/variety.html.
  17. [17]
    L. Lin and T. Weigand, Towards the Standard Model in F-theory, Fortsch. Phys. 63 (2015) 55 [arXiv:1406.6071] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    M. Cvetič, D. Klevers, D.K.M. Peña, P.-K. Oehlmann and J. Reuter, Three-Family Particle Physics Models from Global F-theory Compactifications, JHEP 08 (2015) 087 [arXiv:1503.02068] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    V. Braun, T.W. Grimm and J. Keitel, Complete Intersection Fibers in F-theory, JHEP 03 (2015) 125 [arXiv:1411.2615] [INSPIRE].
  20. [20]
    W. Fulton, Introduction to toric varieties, volume 131, Annals of Mathematics Studies, Princeton University Press (1993).Google Scholar
  21. [21]
    D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, volume 68, Mathematical surveys and monographs, American Mathematical Society (1999) [INSPIRE].
  22. [22]
    D. Cox, J. Little and H. Schenck, Toric Varieties, Graduate studies in mathematics, American Mathematical Society (2011).Google Scholar
  23. [23]
    V. Braun, T.W. Grimm and J. Keitel, New Global F-theory GUTs with U(1) symmetries, JHEP 09 (2013) 154 [arXiv:1302.1854] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    M. Kreuzer and H. Skarke, PALP: A Package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun. 157 (2004) 87 [math.NA/0204356] [INSPIRE].
  25. [25]
    J. Reuter, Non-perturbative aspects of string theory from elliptic curves, Ph.D. Thesis, Universität Bonn, Bonn Germany (2015) [INSPIRE] and online pdf version at http://hss.ulb.uni-bonn.de/2015/4107/4107.htm.
  26. [26]
    L. Borisov, Towards the Mirror Symmetry for Calabi-Yau Complete intersections in Gorenstein Toric Fano Varieties, alg-geom/9310001.
  27. [27]
    V.V. Batyrev and L.A. Borisov, On Calabi-Yau complete intersections in toric varieties, alg-geom/9412017 [INSPIRE].
  28. [28]
    P. Berglund, A. Klemm, P. Mayr and S. Theisen, On type IIB vacua with varying coupling constant, Nucl. Phys. B 558 (1999) 178 [hep-th/9805189] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of Line Bundles: A Computational Algorithm, J. Math. Phys. 51 (2010) 103525 [arXiv:1003.5217] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    M. Cvetič, D. Klevers, H. Piragua and P. Song, Elliptic fibrations with rank three Mordell-Weil group: F-theory with U(1) × U(1) × U(1) gauge symmetry, JHEP 03 (2014) 021 [arXiv:1310.0463] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    I. García-Etxebarria, T.W. Grimm and J. Keitel, Yukawas and discrete symmetries in F-theory compactifications without section, JHEP 11 (2014) 125 [arXiv:1408.6448] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Paul-Konstantin Oehlmann
    • 1
    • 2
  • Jonas Reuter
    • 2
  • Thorsten Schimannek
    • 2
  1. 1.Physics Department, Virginia TechBlacksburgU.S.A.
  2. 2.Bethe Center for Theoretical PhysicsPhysikalisches Institut der Universität BonnBonnGermany

Personalised recommendations