AdS2 holographic dictionary

  • Mirjam Cvetič
  • Ioannis PapadimitriouEmail author
Open Access
Regular Article - Theoretical Physics


We construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetries and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger [1], in agreement with the results of Castro and Song [2]. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS2 × S 2 or conformally AdS2 × S 2 solutions of the STU model in four dimensions, including non extremal black holes. The four dimensional solutions obtained by uplifting the running dilaton solutions coincide with the so called ‘subtracted geometries’, while those obtained from the uplift of the constant dilaton ones are new.


2D Gravity AdS-CFT Correspondence Black Holes Space-Time Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Compère, W. Song and A. Strominger, New boundary conditions for AdS 3, JHEP 05 (2013) 152 [arXiv:1303.2662] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Castro and W. Song, Comments on AdS 2 gravity, arXiv:1411.1948 [INSPIRE].
  3. [3]
    T. Hartman and A. Strominger, Central charge for AdS 2 quantum gravity, JHEP 04 (2009) 026 [arXiv:0803.3621] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Strominger, AdS 2 quantum gravity and string theory, JHEP 01 (1999) 007 [hep-th/9809027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Cadoni and S. Mignemi, Asymptotic symmetries of AdS 2 and conformal group in D = 1, Nucl. Phys. B 557 (1999) 165 [hep-th/9902040] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Spradlin and A. Strominger, Vacuum states for AdS 2 black holes, JHEP 11 (1999) 021 [hep-th/9904143] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. Navarro-Salas and P. Navarro, AdS 2 /CFT 1 correspondence and near extremal black hole entropy, Nucl. Phys. B 579 (2000) 250 [hep-th/9910076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Cadoni and S. Mignemi, Symmetry breaking, central charges and the AdS 2 /CFT 1 correspondence, Phys. Lett. B 490 (2000) 131 [hep-th/0002256] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Caldarelli, G. Catelani and L. Vanzo, Action, Hamiltonian and CFT for 2D black holes, JHEP 10 (2000) 005 [hep-th/0008058] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Cadoni, P. Carta, D. Klemm and S. Mignemi, AdS 2 gravity as conformally invariant mechanical system, Phys. Rev. D 63 (2001) 125021 [hep-th/0009185] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M. Alishahiha and F. Ardalan, Central charge for 2D gravity on AdS 2 and AdS 2 /CFT 1 correspondence, JHEP 08 (2008) 079 [arXiv:0805.1861] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic description of AdS 2 black holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Alishahiha, R. Fareghbal and A.E. Mosaffa, 2D gravity on AdS 2 with Chern-Simons corrections, JHEP 01 (2009) 069 [arXiv:0812.0453] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    D. Grumiller, M. Leston and D. Vassilevich, Anti-de Sitter holography for gravity and higher spin theories in two dimensions, Phys. Rev. D 89 (2014) 044001 [arXiv:1311.7413] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Grumiller, J. Salzer and D. Vassilevich, AdS 2 holography is (non-)trivial for (non-)constant dilaton, JHEP 12 (2015) 015 [arXiv:1509.08486] [INSPIRE].ADSGoogle Scholar
  19. [19]
    K. Jensen, Chaos in AdS 2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, arXiv:1606.01857 [INSPIRE].
  21. [21]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Sen, Entropy Function and AdS 2 /CFT 1 Correspondence, JHEP 11 (2008) 075 [arXiv:0805.0095] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R.K. Gupta and A. Sen, AdS 3 /CFT 2 to AdS 2 /CFT 1, JHEP 04 (2009) 034 [arXiv:0806.0053] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Sen, Quantum entropy function from AdS 2 /CFT 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030].
  28. [28]
    A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27, U.S.A. (2015).
  29. [29]
    J. Erdmenger, C. Hoyos, A. O’Bannon and J. Wu, A holographic model of the Kondo effect, JHEP 12 (2013) 086 [arXiv:1310.3271] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Almheiri and B. Kang, Conformal symmetry breaking and thermodynamics of near-extremal black holes, JHEP 10 (2016) 052 [arXiv:1606.04108] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    R. Jackiw, Liouville field theory: A two-dimensional model for gravity, MIT-CTP-1049 (1982) [INSPIRE].
  32. [32]
    C. Teitelboim, The Hamiltonian structure of two-dimensional space-time and its relation with the conformal anomaly (1983).Google Scholar
  33. [33]
    M. Cvetič and F. Larsen, Conformal symmetry for general black holes, JHEP 02 (2012) 122 [arXiv:1106.3341] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Cvetič and F. Larsen, Conformal symmetry for black holes in four dimensions, JHEP 09 (2012) 076 [arXiv:1112.4846] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M. Cvetič and G.W. Gibbons, Conformal symmetry of a black hole as a scaling limit: a black hole in an asymptotically conical box, JHEP 07 (2012) 014 [arXiv:1201.0601] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    A. Virmani, Subtracted geometry from harrison transformations, JHEP 07 (2012) 086 [arXiv:1203.5088] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    M. Baggio, J. de Boer, J.I. Jottar and D.R. Mayerson, Conformal symmetry for black holes in four dimensions and irrelevant deformations, JHEP 04 (2013) 084 [arXiv:1210.7695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    M. Cvetič, M. Guica and Z.H. Saleem, General black holes, untwisted, JHEP 09 (2013) 017 [arXiv:1302.7032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    M. Cvetič and F. Larsen, Black holes with intrinsic spin, JHEP 11 (2014) 033 [arXiv:1406.4536] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Cvetič and D. Youm, All the static spherically symmetric black holes of heterotic string on a six torus, Nucl. Phys. B 472 (1996) 249 [hep-th/9512127] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    D.D.K. Chow and G. Compère, Seed for general rotating non-extremal black holes of \( \mathcal{N} \) = 8 supergravity, Class. Quant. Grav. 31 (2014) 022001 [arXiv:1310.1925] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    D.D.K. Chow and G. Compère, Black holes in N = 8 supergravity from SO(4, 4) hidden symmetries, Phys. Rev. D 90 (2014) 025029 [arXiv:1404.2602] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Cvetič and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Cvetič, Z.H. Saleem and A. Satz, Entanglement entropy of subtracted geometry black holes, JHEP 09 (2014) 041 [Erratum ibid. 09 (2015) 099] [arXiv:1407.0310] [INSPIRE].
  47. [47]
    M. Cvetič, G.W. Gibbons, Z.H. Saleem and A. Satz, Vacuum polarization of STU black holes and their subtracted geometry limit, JHEP 01 (2015) 130 [arXiv:1411.4658] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    M. Cvetič, Z.H. Saleem and A. Satz, Analytical result for the vacuum polarization of subtracted rotating black holes, Phys. Rev. D 92 (2015) 064030 [arXiv:1506.07189] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP 09 (2008) 094 [arXiv:0807.3324] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    O.S. An, M. Cvetič and I. Papadimitriou, Black hole thermodynamics from a variational principle: Asymptotically conical backgrounds, JHEP 03 (2016) 086 [arXiv:1602.01508] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst and J. Wu, Two-point functions in a holographic Kondo model, in preparation.Google Scholar
  54. [54]
    A.D. Polyanin and V.F. Zaitsev, Handbook of exact solutions for ordinary differential equations, CRC Press, U.S.A. (2003).zbMATHGoogle Scholar
  55. [55]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  56. [56]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  57. [57]
    R.C. Myers, Black hole entropy in two-dimensions, Phys. Rev. D 50 (1994) 6412 [hep-th/9405162] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    J. Gegenberg, G. Kunstatter and D. Louis-Martinez, Observables for two-dimensional black holes, Phys. Rev. D 51 (1995) 1781 [gr-qc/9408015] [INSPIRE].
  59. [59]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    I. Papadimitriou and K. Skenderis, AdS boundary conditions and black hole thermodynamics: scalars, antisymmetric tensors, and topological charges, in preparation.Google Scholar
  61. [61]
    V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari and J. Simon, What is a chiral 2D CFT? And what does it have to do with extremal black holes?, JHEP 02 (2010) 017 [arXiv:0906.3272] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    S. de Haro, I. Papadimitriou and A.C. Petkou, Conformally coupled scalars, instantons and vacuum instability in AdS 4, Phys. Rev. Lett. 98 (2007) 231601 [hep-th/0611315] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    I. Papadimitriou, Multi-trace deformations in AdS/CFT: exploring the vacuum structure of the deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    I. Papadimitriou, Holographic renormalization of general dilaton-axion gravity, JHEP 08 (2011) 119 [arXiv:1106.4826] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    M. Henningson and K. Skenderis, The holographic weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys. 8 (2005) 73 [hep-th/0404176] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  67. [67]
    H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. O’Bannon, I. Papadimitriou and J. Probst, A holographic two-impurity Kondo model, JHEP 01 (2016) 103 [arXiv:1510.08123] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  69. [69]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP 11 (2010) 014 [arXiv:1007.4592] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    W. Chemissany and I. Papadimitriou, Lifshitz holography: the whole shebang, JHEP 01 (2015) 052 [arXiv:1408.0795] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    D. Grumiller, R. McNees and J. Salzer, Cosmological constant as confining U(1) charge in two-dimensional dilaton gravity, Phys. Rev. D 90 (2014) 044032 [arXiv:1406.7007] [INSPIRE].ADSGoogle Scholar
  73. [73]
    K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS/CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    C. Troessaert, Enhanced asymptotic symmetry algebra of AdS 3, JHEP 08 (2013) 044 [arXiv:1303.3296] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    R. Penrose and W. Rindler, Spinors and spacetime, volume 2, Cambridge Universiyt Press (1986), see chapter 9.Google Scholar
  76. [76]
    C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    S.G. Avery, R.R. Poojary and N.V. Suryanarayana, An \( \mathrm{S}\mathrm{L}\left(2,\mathbb{R}\right) \) current algebra from AdS 3 gravity, JHEP 01 (2014) 144 [arXiv:1304.4252] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.Center for Applied Mathematics and Theoretical PhysicsUniversity of MariborMariborSlovenia
  3. 3.SISSA and INFN — Sezione di TriesteTriesteItaly

Personalised recommendations