A note on connected formula for form factors

Open Access
Regular Article - Theoretical Physics

Abstract

In this note we study the connected prescription, originally derived from Witten’s twistor string theory, for tree-level form factors in \( \mathcal{N} \) = 4 super-Yang-Mills theory. The construction is based on the recently proposed four-dimensional scattering equations with n massless on-shell states and one off-shell state, which we expect to work for form factors of general operators. To illustrate the universality of the prescription, we propose compact formulas for super form factors with chiral stress-tensor multiplet operator, and bosonic ones with scalar operators Tr(ϕm) for arbitrary m.

Keywords

Scattering Amplitudes Supersymmetric gauge theory Extended Supersymmetry 

References

  1. [1]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  4. [4]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills scattering amplitudes from scattering equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Two-loop scattering amplitudes from the Riemann sphere, arXiv:1607.08887 [INSPIRE].
  9. [9]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Loop integrands for scattering amplitudes from the Riemann sphere, Phys. Rev. Lett. 115 (2015) 121603 [arXiv:1507.00321] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, One-loop amplitudes on the Riemann sphere, JHEP 03 (2016) 114 [arXiv:1511.06315] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Cachazo, S. He and E.Y. Yuan, One-loop corrections from higher dimensional tree amplitudes, JHEP 08 (2016) 008 [arXiv:1512.05001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Cachazo and Y. Geyer, A ‘twistor string’ inspired formula for tree-level scattering amplitudes in N = 8 SUGRA, arXiv:1206.6511 [INSPIRE].
  14. [14]
    F. Cachazo and D. Skinner, Gravity from rational curves in twistor space, Phys. Rev. Lett. 110 (2013) 161301 [arXiv:1207.0741] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F. Cachazo, L. Mason and D. Skinner, Gravity in twistor space and its Grassmannian formulation, SIGMA 10 (2014) 051 [arXiv:1207.4712] [INSPIRE].MathSciNetMATHGoogle Scholar
  16. [16]
    D. Skinner, Twistor strings for N = 8 supergravity, arXiv:1301.0868 [INSPIRE].
  17. [17]
    F. Cachazo, S. He and E.Y. Yuan, Scattering in three dimensions from rational maps, JHEP 10 (2013) 141 [arXiv:1306.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor strings in four dimensions, Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. Adamo, E. Casali, K.A. Roehrig and D. Skinner, On tree amplitudes of supersymmetric Einstein-Yang-Mills theory, JHEP 12 (2015) 177 [arXiv:1507.02207] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    F. Cachazo and G. Zhang, Minimal basis in four dimensions and scalar blocks, arXiv:1601.06305 [INSPIRE].
  21. [21]
    S. He, Z. Liu and J.-B. Wu, Scattering equations, twistor-string formulas and double-soft limits in four dimensions, JHEP 07 (2016) 060 [arXiv:1604.02834] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    F. Cachazo, P. Cha and S. Mizera, Extensions of theories from soft limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. He and Y. Zhang, Connected formulas for amplitudes in Standard Model, arXiv:1607.02843 [INSPIRE].
  24. [24]
    A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form factors in N = 4 super Yang-Mills and periodic Wilson loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    L.V. Bork, D.I. Kazakov and G.S. Vartanov, On form factors in N = 4 SYM, JHEP 02 (2011) 063 [arXiv:1011.2440] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of super form factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    B. Penante, B. Spence, G. Travaglini and C. Wen, On super form factors of half-BPS operators in N = 4 super Yang-Mills, JHEP 04 (2014) 083 [arXiv:1402.1300] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L.V. Bork, D.I. Kazakov and G.S. Vartanov, On MHV form factors in superspace for N = 4 SYM theory, JHEP 10 (2011) 133 [arXiv:1107.5551] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in N = 4 SYM in dimensional and massive regularizations, JHEP 12 (2011) 024 [arXiv:1109.5057] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in N = 4 super Yang-Mills, JHEP 03 (2012) 101 [arXiv:1112.4524] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    L.V. Bork, On NMHV form factors in N = 4 SYM theory from generalized unitarity, JHEP 01 (2013) 049 [arXiv:1203.2596] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    O.T. Engelund and R. Roiban, Correlation functions of local composite operators from generalized unitarity, JHEP 03 (2013) 172 [arXiv:1209.0227] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    H. Johansson, D.A. Kosower and K.J. Larsen, Two-loop maximal unitarity with external masses, Phys. Rev. D 87 (2013) 025030 [arXiv:1208.1754] [INSPIRE].ADSGoogle Scholar
  35. [35]
    R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic duality for form factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    A. Brandhuber, B. Penante, G. Travaglini and C. Wen, The last of the simple remainders, JHEP 08 (2014) 100 [arXiv:1406.1443] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L.V. Bork, On form factors in N = 4 SYM theory and polytopes, JHEP 12 (2014) 111 [arXiv:1407.5568] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Wilhelm, Amplitudes, form factors and the dilatation operator in N = 4 SYM theory, JHEP 02 (2015) 149 [arXiv:1410.6309] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    D. Nandan, C. Sieg, M. Wilhelm and G. Yang, Cutting through form factors and cross sections of non-protected operators in N = 4 SYM, JHEP 06 (2015) 156 [arXiv:1410.8485] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm and G. Yang, On-shell methods for the two-loop dilatation operator and finite remainders, JHEP 10 (2015) 012 [arXiv:1504.06323] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    R. Frassek, D. Meidinger, D. Nandan and M. Wilhelm, On-shell diagrams, Graßmannians and integrability for form factors, JHEP 01 (2016) 182 [arXiv:1506.08192] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    L.V. Bork and A.I. Onishchenko, On soft theorems and form factors in N = 4 SYM theory, JHEP 12 (2015) 030 [arXiv:1506.07551] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    R. Boels, B.A. Kniehl and G. Yang, Master integrals for the four-loop Sudakov form factor, Nucl. Phys. B 902 (2016) 387 [arXiv:1508.03717] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    R. Huang, Q. Jin and B. Feng, Form factor and boundary contribution of amplitude, JHEP 06 (2016) 072 [arXiv:1601.06612] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    L.V. Bork and A.I. Onishchenko, Grassmannians and form factors with q 2 = 0 in N = 4 SYM theory, arXiv:1607.00503 [INSPIRE].
  46. [46]
    L.V. Bork and A.I. Onishchenko, Wilson lines, Grassmannians and gauge invariant off-shell amplitudes in N = 4 SYM, arXiv:1607.02320 [INSPIRE].
  47. [47]
    J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11 (2010) 104 [arXiv:1009.1139] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    Z. Gao and G. Yang, Y-system for form factors at strong coupling in AdS 5 and with multi-operator insertions in AdS 3, JHEP 06 (2013) 105 [arXiv:1303.2668] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    M. Wilhelm, Form factors and the dilatation operator in N = 4 super Yang-Mills theory and its deformations, arXiv:1603.01145 [INSPIRE].
  50. [50]
    N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605 [INSPIRE].
  51. [51]
    L.J. Dixon, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP 12 (2004) 015 [hep-th/0411092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: part I, Nucl. Phys. B 869 (2013) 329 [arXiv:1103.3714] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: part II, Nucl. Phys. B 869 (2013) 378 [arXiv:1103.4353] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    L. Dolan and P. Goddard, The polynomial form of the scattering equations, JHEP 07 (2014) 029 [arXiv:1402.7374] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    S. Weinzierl, Fermions and the scattering equations, JHEP 03 (2015) 141 [arXiv:1412.5993] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  56. [56]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in twistor space, JHEP 03 (2010) 110 [arXiv:0903.2110] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and Grassmannian dualities, JHEP 01 (2011) 049 [arXiv:0912.4912] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, All tree-level MHV form factors in N = 4 SYM from twistor space, JHEP 06(2016) 162 [arXiv:1604.00012] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, Composite operators in the twistor formulation of N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016) 011601 [arXiv:1603.04471] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D. Chicherin and E. Sokatchev, Demystifying the twistor construction of composite operators in N = 4 super-Yang-Mills theory, arXiv:1603.08478 [INSPIRE].
  62. [62]
    D. Chicherin et al., Correlation functions of the chiral stress-tensor multiplet in N = 4 SYM, JHEP 06 (2015) 198 [arXiv:1412.8718] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    A. Brandhuber, E. Hughes, R. Panerai, B. Spence and G. Travaglini, The connected prescription for form factors in twistor space, arXiv:1608.03277 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China
  2. 2.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations