Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–15 | Cite as

De Alfaro, Fubini and Furlan from multi matrix systems

Regular Article - Theoretical Physics

Abstract

We consider the quantum mechanics of an even number of space indexed hermitian matrices. Upon complexification, we show that a closed subsector naturally parametrized by a matrix valued radial coordinate has a description in terms of non interacting s-state “radial fermions” with an emergent De Alfaro, Fubini and Furlan type potential, present only for two or more complex matrices. The concomitant AdS2 symmetry is identified.The large N description in terms of the density of radial eigenvalues is also described.

Keywords

Matrix Models AdS-CFT Correspondence 1/N Expansion Gauge-gravity correspondence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  2. [2]
    T. Eguchi and H. Kawai, Reduction of Dynamical Degrees of Freedom in the Large-N Gauge Theory, Phys. Rev. Lett. 48 (1982) 1063 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Bhanot, U.M. Heller and H. Neuberger, The Quenched Eguchi-Kawai Model, Phys. Lett. B 113 (1982) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D.J. Gross and Y. Kitazawa, A Quenched Momentum Prescription for Large-N Theories, Nucl. Phys. B 206 (1982) 440 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A Conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  7. [7]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  8. [8]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large-N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    D.E. Berenstein, A Toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    N.R. Constable, D.Z. Freedman, M. Headrick, S. Minwalla, L. Motl, A. Postnikov et al., PP wave string interactions from perturbative Yang-Mills theory, JHEP 07 (2002) 017 [hep-th/0205089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    N. Beisert, C. Kristjansen, J. Plefka and M. Staudacher, BMN gauge theory as a quantum mechanical system, Phys. Lett. B 558 (2003) 229 [hep-th/0212269] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    R. de Mello Koch, A. Donos, A. Jevicki and J.P. Rodrigues, Derivation of string field theory from the large-N BMN limit, Phys. Rev. D 68 (2003) 065012 [hep-th/0305042] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Donos, A. Jevicki and J.P. Rodrigues, Matrix model maps in AdS/CFT, Phys. Rev. D 72 (2005) 125009 [hep-th/0507124] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    J.P. Rodrigues, Large-N spectrum of two matrices in a harmonic potential and BMN energies, JHEP 12 (2005) 043 [hep-th/0510244] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Jevicki and B. Sakita, The Quantum Collective Field Method and Its Application to the Planar Limit, Nucl. Phys. B 165 (1980) 511 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Jevicki and B. Sakita, Collective Field Approach to the Large-N Limit: Euclidean Field Theories, Nucl. Phys. B 185 (1981) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    N. Kim, T. Klose and J. Plefka, Plane wave matrix theory from N = 4 super Yang-Mills on R × S 3, Nucl. Phys. B 671 (2003) 359 [hep-th/0306054] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    T. Fischbacher, T. Klose and J. Plefka, Planar plane-wave matrix theory at the four loop order: Integrability without BMN scaling, JHEP 02 (2005) 039 [hep-th/0412331] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    N. Beisert, The Dilatation operator of N = 4 super Yang-Mills theory and integrability, Phys. Rept. 405 (2004) 1 [hep-th/0407277] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact Multi-Matrix Correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact Multi-Restricted Schur Polynomial Correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons - with Strings Attached (I), JHEP 06 (2007) 074 [hep-th/0701066] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  32. [32]
    R. de Mello Koch and J. Murugan, Emergent Spacetime, arXiv:0911.4817 [INSPIRE].
  33. [33]
    M. Masuku and J.P. Rodrigues, Laplacians in polar matrix coordinates and radial fermionization in higher dimensions, J. Math. Phys. 52 (2011) 032302 [arXiv:0911.2846] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    M. Masuku and J.P. Rodrigues, How universal is the Wigner distribution?, J. Phys. A 45 (2012) 085201 [arXiv:1107.3681] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  35. [35]
    V. de Alfaro, S. Fubini and G. Furlan, Conformal Invariance in Quantum Mechanics, Nuovo Cim. A 34 (1976) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Strominger, AdS 2 quantum gravity and string theory, JHEP 01 (1999) 007 [hep-th/9809027] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G.W. Gibbons and P.K. Townsend, Black holes and Calogero models, Phys. Lett. B 454 (1999) 187 [hep-th/9812034] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    M. Spradlin and A. Strominger, Vacuum states for AdS 2 black holes, JHEP 11 (1999) 021 [hep-th/9904143] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    A. Strominger, A Matrix model for AdS 2, JHEP 03 (2004) 066 [hep-th/0312194] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Hartman and A. Strominger, Central Charge for AdS 2 Quantum Gravity, JHEP 04 (2009) 026 [arXiv:0803.3621] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Sen, Entropy Function and AdS 2 /CFT 1 Correspondence, JHEP 11 (2008) 075 [arXiv:0805.0095] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Sen, Quantum Entropy Function from AdS 2 /CFT 1 Correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    A. Sen, State Operator Correspondence and Entanglement in AdS 2 /CFT 1, Entropy 13 (2011) 1305 [arXiv:1101.4254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    A. Castro and W. Song, Comments on AdS 2 Gravity, arXiv:1411.1948 [INSPIRE].
  46. [46]
    E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar Diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    I.R. Klebanov, String theory in two-dimensions, in Proceedings of Trieste ICTP Spring School 1991, String theory and quantum gravity91, pg. 30–101 [Princeton University — PUPT-1271 (91/07, rec.Oct.)] [hep-th/9108019] [INSPIRE].
  48. [48]
    R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CFT 3 Construction from Collective Fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].ADSGoogle Scholar
  49. [49]
    S.J. Brodsky, G.F. de Teramond, H.G. Dosch and J. Erlich, Light-Front Holographic QCD and Emerging Confinement, Phys. Rept. 584 (2015) 1 [arXiv:1407.8131] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    K. Demeterfi, A. Jevicki and J.P. Rodrigues, Scattering amplitudes and loop corrections in collective string field theory, Nucl. Phys. B 362 (1991) 173 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    S. Bellucci, A. Galajinsky, E. Ivanov and S. Krivonos, AdS 2 /CFT 1 , canonical transformations and superconformal mechanics, Phys. Lett. B 555 (2003) 99 [hep-th/0212204] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2015

Authors and Affiliations

  1. 1.National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Department of PhysicsBrown UniversityProvidenceU.S.A.

Personalised recommendations