Advertisement

Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–24 | Cite as

Long-lived sleptons at the LHC and a 100 TeV proton collider

  • Jonathan L. Feng
  • Sho Iwamoto
  • Yael Shadmi
  • Shlomit Tarem
Open Access
Regular Article - Theoretical Physics

Abstract

We study the prospects for long-lived charged particle (LLCP) searches at current and future LHC runs and at a 100 TeV pp collider, using Drell-Yan slepton pair production as an example. Because momentum measurements become more challenging for very energetic particles, we carefully treat the expected momentum resolution. At the same time, a novel feature of 100 TeV collisions is the significant energy loss of energetic muons in the calorimeter. We use this to help discriminate between muons and LLCPs. We find that the 14 TeV LHC with an integrated luminosity of 3 ab−1 can probe LLCP slepton masses up to 1.2 TeV, and a 100 TeV pp collider with 3 ab−1 can probe LLCP slepton masses up to 4 TeV, using time-of-flight measurements. These searches will have striking implications for dark matter, with the LHC definitively testing the possibility of slepton-neutralino co-annihilating WIMP dark matter, and with the LHC and future hadron colliders having a strong potential for discovering LLCPs in models with superWIMP dark matter.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  2. [2]
    ATLAS collaboration, Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 068 [arXiv:1411.6795] [INSPIRE].
  3. [3]
    CMS collaboration, Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 325 [arXiv:1502.02522] [INSPIRE].
  4. [4]
    Y. Gershtein et al., Working group report: new particles, forces and dimensions, arXiv:1311.0299 [INSPIRE].
  5. [5]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B.S. Acharya, K. BoŻek, C. Pongkitivanichkul and K. Sakurai, Prospects for observing charginos and neutralinos at a 100 TeV proton-proton collider, JHEP 02 (2015) 181 [arXiv:1410.1532] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Gori, S. Jung, L.-T. Wang and J.D. Wells, Prospects for electroweakino discovery at a 100 TeV hadron collider, JHEP 12 (2014) 108 [arXiv:1410.6287] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [INSPIRE].
  9. [9]
    M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].
  10. [10]
    J.L. Feng and T. Moroi, Tevatron signatures of longlived charged sleptons in gauge mediated supersymmetry breaking models, Phys. Rev. D 58 (1998) 035001 [hep-ph/9712499] [INSPIRE].
  11. [11]
    T. Cohen et al., SUSY simplified models at 14, 33 and 100 TeV proton colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.L. Feng, A. Rajaraman and F. Takayama, Superweakly interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [INSPIRE].
  13. [13]
    J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].
  14. [14]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.R. Ellis, T. Falk and K.A. Olive, Neutralino-stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].
  16. [16]
    Y. Konishi, S. Ohta, J. Sato, T. Shimomura, K. Sugai and M. Yamanaka, First evidence of the constrained minimal supersymmetric standard model is appearing soon, Phys. Rev. D 89 (2014) 075006 [arXiv:1309.2067] [INSPIRE].ADSGoogle Scholar
  17. [17]
    N. Desai, J. Ellis, F. Luo and J. Marrouche, Closing in on the tip of the CMSSM stau coannihilation strip, Phys. Rev. D 90 (2014) 055031 [arXiv:1404.5061] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Heisig and J. Kersten, Production of long-lived staus in the Drell-Yan process, Phys. Rev. D 84 (2011) 115009 [arXiv:1106.0764] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Heisig and J. Kersten, Long-lived staus from strong production in a simplified model approach, Phys. Rev. D 86 (2012) 055020 [arXiv:1203.1581] [INSPIRE].ADSGoogle Scholar
  20. [20]
    D.E. Groom, N.V. Mokhov and S.I. Striganov, Muon stopping power and range tables 10 MeV to 100 TeV, Atom. Data Nucl. Data Tabl. 78 (2001) 183.ADSCrossRefGoogle Scholar
  21. [21]
    J.L. Feng, S. Su and F. Takayama, Supergravity with a gravitino LSP, Phys. Rev. D 70 (2004) 075019 [hep-ph/0404231] [INSPIRE].
  22. [22]
    J. Bernstein, L.S. Brown and G. Feinberg, The cosmological heavy neutrino problem revisited, Phys. Rev. D 32 (1985) 3261 [INSPIRE].ADSGoogle Scholar
  23. [23]
    R.J. Scherrer and M.S. Turner, On the relic, cosmic abundance of stable weakly interacting massive particles, Phys. Rev. D 33 (1986) 1585 [Erratum ibid. D 34 (1986) 3263] [INSPIRE].
  24. [24]
    T. Asaka, K. Hamaguchi and K. Suzuki, Cosmological gravitino problem in gauge mediated supersymmetry breaking models, Phys. Lett. B 490 (2000) 136 [hep-ph/0005136] [INSPIRE].
  25. [25]
    J.L. Feng, S.-f. Su and F. Takayama, SuperWIMP gravitino dark matter from slepton and sneutrino decays, Phys. Rev. D 70 (2004) 063514 [hep-ph/0404198] [INSPIRE].
  26. [26]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Bailly, K. Jedamzik and G. Moultaka, Gravitino dark matter and the cosmic lithium abundances, Phys. Rev. D 80 (2009) 063509 [arXiv:0812.0788] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Anderson et al., Snowmass energy frontier simulations, arXiv:1309.1057 [INSPIRE].
  29. [29]
    A. Avetisyan et al., Methods and results for standard model event generation at \( \sqrt{s}=14 \) TeV, 33 TeV and 100 TeV proton colliders (a Snowmass whitepaper), arXiv:1308.1636 [INSPIRE].
  30. [30]
    A. Avetisyan et al., Snowmass energy frontier simulations using the open science grid (a Snowmass 2013 whitepaper), arXiv:1308.0843 [INSPIRE].
  31. [31]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  33. [33]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  34. [34]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
  36. [36]
    A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  38. [38]
    GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
  39. [39]
    A. Salvucci, Measurement of muon momentum resolution of the ATLAS detector, EPJ Web Conf. 28 (2012) 12039 [arXiv:1201.4704] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    ATLAS collaboration, Expected performance of the ATLAS experimentDetector, trigger and physics, arXiv:0901.0512 [INSPIRE].
  41. [41]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    P. Meade and M. Reece, BRIDGE: branching ratio inquiry/decay generated events, hep-ph/0703031 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Jonathan L. Feng
    • 1
  • Sho Iwamoto
    • 2
  • Yael Shadmi
    • 2
  • Shlomit Tarem
    • 2
  1. 1.Department of Physics and AstronomyUniversity of CaliforniaIrvineU.S.A.
  2. 2.Physics DepartmentTechnion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations