Advertisement

Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–23 | Cite as

Double-soft behavior for scalars and gluons from string theory

  • Paolo Di Vecchia
  • Raffaele MarottaEmail author
  • Matin Mojaza
Open Access
Regular Article - Theoretical Physics

Abstract

We compute the leading double-soft behavior for gluons and for the scalars obtained by dimensional reduction of a higher dimensional pure gauge theory, from the scattering amplitudes of gluons and scalars living in the world-volume of a Dp-brane of the bosonic string. In the case of gluons, we compute both the double-soft behavior when the two soft gluons are contiguous as well as when they are not contiguous. From our results, that are valid in string theory, one can easily get the double-soft limit in gauge field theory by sending the string tension to infinity.

Keywords

Scattering Amplitudes D-branes Bosonic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F.E. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev. 96 (1954) 1428 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Gell-Mann and M.L. Goldberger, Scattering of low-energy photons by particles of spin 1/2, Phys. Rev. 96 (1954) 1433 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Saito, Low-energy theorem for Compton scattering, Phys. Rev. 184 (1969) 1894 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Weinberg, Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.S. Bell and R. Van Royen, On the low-burnett-kroll theorem for soft-photon emission, Nuovo Cim. A 60 (1969) 62 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    V. Del Duca, High-energy Bremsstrahlung theorems for soft photons, Nucl. Phys. B 345 (1990) 369 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D.J. Gross and R. Jackiw, Low-energy theorem for graviton scattering, Phys. Rev. 166 (1968) 1287 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Jackiw, Low-energy theorems for massless bosons: photons and gravitons, Phys. Rev. 168 (1968) 1623 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V. de Alfaro, S. Fubini, G. Furlan and C. Rossetti, Currents in hadron physics, North-Holland, Amsterdam Netherlands (1974).Google Scholar
  13. [13]
    E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    C.D. White, Factorization properties of soft graviton amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinbergs soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity \( \mathcal{S} \) -matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    R.K. Sachs, Gravitational waves in general relativity. VIII. Waves in asymptotically flat space-time, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    G. Barnich and C. Troessaert, Symmetries of asymptotically flat four-dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    G. Barnich and C. Troessaert, Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity, JHEP 11 (2013) 003 [arXiv:1309.0794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].
  25. [25]
    E. Casali, Soft sub-leading divergences in Yang-Mills amplitudes, JHEP 08 (2014) 077 [arXiv:1404.5551] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B.U.W. Schwab and A. Volovich, Subleading soft theorem in arbitrary dimensions from scattering equations, Phys. Rev. Lett. 113 (2014) 101601 [arXiv:1404.7749] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    N. Afkhami-Jeddi, Soft graviton theorem in arbitrary dimensions, arXiv:1405.3533 [INSPIRE].
  28. [28]
    A.J. Larkoski, Conformal invariance of the subleading soft theorem in gauge theory, Phys. Rev. D 90 (2014) 087701 [arXiv:1405.2346] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Bianchi, S. He, Y.-t. Huang and C. Wen, More on soft theorems: trees, loops and strings, Phys. Rev. D 92 (2015) 065022 [arXiv:1406.5155] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    T. Adamo, E. Casali and D. Skinner, Perturbative gravity at null infinity, Class. Quant. Grav. 31 (2014) 225008 [arXiv:1405.5122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav. 32 (2015) 055003 [arXiv:1406.1462] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    H. Luo, P. Mastrolia and W.J. Torres Bobadilla, Subleading soft behavior of QCD amplitudes, Phys. Rev. D 91 (2015) 065018 [arXiv:1411.1669] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Constraining subleading soft gluon and graviton theorems, Phys. Rev. D 90 (2014) 065024 [arXiv:1406.6574] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-energy behavior of gluons and gravitons from gauge invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Kalousios and F. Rojas, Next to subleading soft-graviton theorem in arbitrary dimensions, JHEP 01 (2015) 107 [arXiv:1407.5982] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Zlotnikov, Sub-sub-leading soft-graviton theorem in arbitrary dimension, JHEP 10 (2014) 148 [arXiv:1407.5936] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A.J. Larkoski, D. Neill and I.W. Stewart, Soft theorems from effective field theory, JHEP 06 (2015) 077 [arXiv:1412.3108] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    W.-M. Chen, Y.-t. Huang and C. Wen, New fermionic soft theorems for supergravity amplitudes, Phys. Rev. Lett. 115 (2015) 021603 [arXiv:1412.1809] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Sabio Vera and M.A. Vazquez-Mozo, The double copy structure of soft gravitons, JHEP 03 (2015) 070 [arXiv:1412.3699] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  40. [40]
    C.D. White, Diagrammatic insights into next-to-soft corrections, Phys. Lett. B 737 (2014) 216 [arXiv:1406.7184] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    Y.-J. Du, B. Feng, C.-H. Fu and Y. Wang, Note on soft graviton theorem by KLT relation, JHEP 11 (2014) 090 [arXiv:1408.4179] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A.E. Lipstein, Soft theorems from conformal field theory, JHEP 06 (2015) 166 [arXiv:1504.01364] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig, New ambitwistor string theories, JHEP 11 (2015) 038 [arXiv:1506.08771] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    Z. Bern, S. Davies and J. Nohle, On loop corrections to subleading soft behavior of gluons and gravitons, Phys. Rev. D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. He, Y.-t. Huang and C. Wen, Loop corrections to soft theorems in gauge theories and gravity, JHEP 12 (2014) 115 [arXiv:1405.1410] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Local contributions to factorized soft graviton theorems at loop level, Phys. Lett. B 746 (2015) 293 [arXiv:1411.2230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    B.U.W. Schwab, Subleading soft factor for string disk amplitudes, JHEP 08 (2014) 062 [arXiv:1406.4172] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    B.U.W. Schwab, A note on soft factors for closed string scattering, JHEP 03 (2015) 140 [arXiv:1411.6661] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  50. [50]
    P. Di Vecchia, R. Marotta and M. Mojaza, Soft theorem for the graviton, dilaton and the Kalb-Ramond field in the bosonic string, JHEP 05 (2015) 137 [arXiv:1502.05258] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    M. Ademollo et al., Soft dilations and scale renormalization in dual theories, Nucl. Phys. B 94 (1975) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J.A. Shapiro, On the renormalization of dual models, Phys. Rev. D 11 (1975) 2937 [INSPIRE].ADSGoogle Scholar
  53. [53]
    T. Yoneya, String coupling constant and dilaton vacuum expectation value in string field theory, Phys. Lett. B 197 (1987) 76 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    H. Hata, Soft dilaton theorem in string field theory, Prog. Theor. Phys. 88 (1992) 1197 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Bianchi and A.L. Guerrieri, On the soft limit of open string disk amplitudes with massive states, JHEP 09 (2015) 164 [arXiv:1505.05854] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    I. Low, Adlers zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev. D 91 (2015) 105017 [arXiv:1412.2145] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    F. Cachazo, S. He and E.Y. Yuan, New double soft emission theorems, Phys. Rev. D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Volovich, C. Wen and M. Zlotnikov, Double soft theorems in gauge and string theories, JHEP 07 (2015) 095 [arXiv:1504.05559] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    T. Klose, T. McLoughlin, D. Nandan, J. Plefka and G. Travaglini, Double-soft limits of gluons and gravitons, JHEP 07 (2015) 135 [arXiv:1504.05558] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    G. Georgiou, Multi-soft theorems in gauge theory from MHV diagrams, JHEP 08 (2015) 128 [arXiv:1505.08130] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Paolo Di Vecchia
    • 1
    • 2
  • Raffaele Marotta
    • 3
    Email author
  • Matin Mojaza
    • 2
  1. 1.The Niels Bohr InstituteUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  3. 3.Instituto Nazionale di Fisica Nucleare, Sezione di NapoliNapoliItaly

Personalised recommendations