Advertisement

Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–18 | Cite as

Pole inflation — Shift symmetry and universal corrections

  • B.J. BroyEmail author
  • M. Galante
  • D. Roest
  • A. Westphal
Open Access
Regular Article - Theoretical Physics

Abstract

An appealing explanation for the Planck data is provided by inflationary mod els with a singular non-canonical kinetic term: a Laurent expansion of the kinetic function translates into a potential with a nearly shift-symmetric plateau in canonical fields. The shift symmetry can be broken at large field values by including higher-order poles, which need to be hierarchically suppressed in order not to spoil the inflationary plateau. The herefrom resulting corrections to the inflationary dynamics and predictions are shown to be universal at lowest order and possibly to induce power loss at large angular scales. At lowest order there are no corrections from a pole of just one order higher and we argue that this phenomenon is related to the well-known extended no-scale structure arising in string theory scenarios. Finally, we outline which other corrections may arise from string loop effects.

Keywords

Cosmology of Theories beyond the SM Classical Theories of Gravity Effective field theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    WMAP collaboration, C.L. Bennett et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results, Astrophys. J. Suppl. 208 (2013) 20 [arXiv:1212.5225] [INSPIRE].
  2. [2]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].
  3. [3]
    BICEP2, Planck collaboration, P. Ade et al., Joint analysis of BICEP2/KeckArray and Planck data, Phys. Rev. Lett. 114 (2015) 101301 [arXiv:1502.00612] [INSPIRE].
  4. [4]
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSGoogle Scholar
  5. [5]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. García-Bellido, D. Roest, M. Scalisi and I. Zavala, Lyth bound of inflation with a tilt, Phys. Rev. D 90 (2014) 123539 [arXiv:1408.6839] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99.ADSCrossRefGoogle Scholar
  12. [12]
    R. Kallosh and A. Linde, Universality class in conformal inflation, JCAP 07 (2013) 002 [arXiv:1306.5220] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Minimal supergravity models of inflation, Phys. Rev. D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Kallosh, A. Linde and D. Roest, Universal attractor for inflation at strong coupling, Phys. Rev. Lett. 112 (2014) 011303 [arXiv:1310.3950] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Kallosh, A. Linde and D. Roest, Superconformal inflationary α-attractors, JHEP 11 (2013) 198 [arXiv:1311.0472] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Galante, R. Kallosh, A. Linde and D. Roest, Unity of cosmological inflation attractors, Phys. Rev. Lett. 114 (2015) 141302 [arXiv:1412.3797] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. von Gersdorff and A. Hebecker, Kähler corrections for the volume modulus of flux compactifications, Phys. Lett. B 624 (2005) 270 [hep-th/0507131] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Berg, M. Haack and E. Pajer, Jumping through loops: on soft terms from large volume compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of string loop corrections in type IIB Calabi-Yau flux compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Berg, M. Haack, J.U. Kang and S. Sjörs, Towards the one-loop Kähler metric of Calabi-Yau orientifolds, JHEP 12 (2014) 077 [arXiv:1407.0027] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    C.R. Contaldi, M. Peloso, L. Kofman and A.D. Linde, Suppressing the lower multipoles in the CMB anisotropies, JCAP 07 (2003) 002 [astro-ph/0303636] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    S. Downes and B. Dutta, Inflection points and the power spectrum, Phys. Rev. D 87 (2013) 083518 [arXiv:1211.1707] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Cicoli, S. Downes and B. Dutta, Power suppression at large scales in string inflation, JCAP 12 (2013) 007 [arXiv:1309.3412] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F.G. Pedro and A. Westphal, Low-ℓ CMB power loss in string inflation, JHEP 04 (2014) 034 [arXiv:1309.3413] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Bousso, D. Harlow and L. Senatore, Inflation after false vacuum decay: observational prospects after Planck, Phys. Rev. D 91 (2015) 083527 [arXiv:1309.4060] [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Bousso, D. Harlow and L. Senatore, Inflation after false vacuum decay: new evidence from BICEP2, JCAP 12 (2014) 019 [arXiv:1404.2278] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Kallosh, A. Linde and A. Westphal, Chaotic inflation in supergravity after Planck and BICEP2, Phys. Rev. D 90 (2014) 023534 [arXiv:1405.0270] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Cicoli, S. Downes, B. Dutta, F.G. Pedro and A. Westphal, Just enough inflation: power spectrum modifications at large scales, JCAP 12 (2014) 030 [arXiv:1407.1048] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    B.J. Broy, D. Roest and A. Westphal, Power spectrum of inflationary attractors, Phys. Rev. D 91 (2015) 023514 [arXiv:1408.5904] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A.L. Berkin and K. Maeda, Effects of R3 and RR terms on R 2 inflation, Phys. Lett. B 245 (1990) 348.ADSCrossRefGoogle Scholar
  32. [32]
    B.J. Broy, F.G. Pedro and A. Westphal, Disentangling the f (R)-duality, JCAP 03 (2015) 029 [arXiv:1411.6010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Deutsches Elektronen-Synchrotron DESY, Theory GroupHamburgGermany
  2. 2.Van Swinderen Institute for Particle Physics and GravityUniversity of GroningenGroningenThe Netherlands

Personalised recommendations