Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–48 | Cite as

Integrability of smooth Wilson loops in \( \mathcal{N}=4 \) superspace

  • Niklas Beisert
  • Dennis Müller
  • Jan Plefka
  • Cristian Vergu
Open Access
Regular Article - Theoretical Physics

Abstract

We perform a detailed study of the Yangian symmetry of smooth supersymmetric Maldacena-Wilson loops in planar \( \mathcal{N}=4 \) super Yang-Mills theory. This hidden symmetry extends the global superconformal symmetry present for these observables. A gauge-covariant action of the Yangian generators on the Wilson line is established that generalizes previous constructions built upon path variations. Employing these generators the Yangian symmetry is proven for general paths in non-chiral \( \mathcal{N}=4 \) superspace at the first perturbative order. The bi-local piece of the level-one generators requires the use of a regulator due to divergences in the coincidence limit. We perform regularization by point splitting in detail, thereby constructing additional local and boundary contributions as regularization for all level-one Yangian generators. Moreover, the Yangian algebra at level one is checked and compatibility with local kappa-symmetry is established. Finally, the consistency of the Yangian symmetry is shown to depend on two properties: the vanishing of the dual Coxeter number of the underlying superconformal algebra and the existence of a novel superspace “G-identity” for the gauge field theory. This tightly constrains the conformal gauge theories to which integrability can possibly apply.

Keywords

Wilson ’t Hooft and Polyakov loops Superspaces AdS-CFT Correspondence Integrable Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    N. Beisert, C. Kristjansen and M. Staudacher, The Dilatation operator of conformal N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  8. [8]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    H. Ooguri, J. Rahmfeld, H. Robins and J. Tannenhauser, Holography in superspace, JHEP 07 (2000) 045 [hep-th/0007104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    D. Müller, H. Münkler, J. Plefka, J. Pollok and K. Zarembo, Yangian Symmetry of smooth Wilson Loops in \( \mathcal{N}=4 \) super Yang-Mills Theory, JHEP 11 (2013) 081 [arXiv:1309.1676] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    N. Beisert, D. Müller, J. Plefka and C. Vergu, Smooth Wilson Loops in N = 4 Non-Chiral Superspace, JHEP 12 (2015) 140 [arXiv:1506.07047] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    H. Münkler and J. Pollok, Minimal surfaces of the AdS 5 × S 5 superstring and the symmetries of super Wilson loops at strong coupling, J. Phys. A 48 (2015) 365402 [arXiv:1503.07553] [INSPIRE].MATHGoogle Scholar
  15. [15]
    H. Münkler, Bonus Symmetry for Super Wilson Loops, arXiv:1507.02474 [INSPIRE].
  16. [16]
    N. Beisert and B.U.W. Schwab, Bonus Yangian Symmetry for the Planar S-matrix of N = 4 Super Yang-Mills, Phys. Rev. Lett. 106 (2011) 231602 [arXiv:1103.0646] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for Scattering Amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE].MathSciNetMATHGoogle Scholar
  19. [19]
    N. Drukker, Integrable Wilson loops, JHEP 10 (2013) 135 [arXiv:1203.1617] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix III. The two-particle contributions, JHEP 08 (2014) 085 [arXiv:1402.3307] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix IV. Gluons and Fusion, JHEP 09 (2014) 149 [arXiv:1407.1736] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    L.J. Mason and D. Skinner, The Complete Planar S-matrix of N = 4 SYM as a Wilson Loop in Twistor Space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    N. Beisert and C. Vergu, On the Geometry of Null Polygons in Full N = 4 Superspace, Phys. Rev. D 86 (2012) 026006 [arXiv:1203.0525] [INSPIRE].ADSGoogle Scholar
  29. [29]
    N. Beisert, S. He, B.U.W. Schwab and C. Vergu, Null Polygonal Wilson Loops in Full N = 4 Superspace, J. Phys. A 45 (2012) 265402 [arXiv:1203.1443] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  30. [30]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of N = 4 super Yang-Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Spectral Parameters for Scattering Amplitudes in N = 4 Super Yang-Mills Theory, JHEP 01 (2014) 094 [arXiv:1308.3494] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    J.M. Maillet, Kac-Moody Algebra and Extended Yang-Baxter Relations in the O(N) Nonlinear σ Model, Phys. Lett. B 162 (1985) 137 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    N. Beisert, A. Garus and M. Rosso, work in progress.Google Scholar
  35. [35]
    L. Dolan, C.R. Nappi and E. Witten, Yangian symmetry in D =4 superconformal Yang-Mills theory, in Quantum Theory and Symmetries, P.C. Argyres et al. eds., World Scientific, Singapore (2004) [hep-th/0401243].
  36. [36]
    T. Matsumoto, S. Moriyama and A. Torrielli, A Secret Symmetry of the AdS/CFT S-matrix, JHEP 09 (2007) 099 [arXiv:0708.1285] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    N. Beisert, On Yangian Symmetry in Planar \( \mathcal{N}=4 \) SYM, in Gribov-80 Memorial VolumeQuantum Chromodynamics and Beyond, Yu.L. Dokshitzer, P. Lévai and J. Nyíry eds., World Scientific, Singapore (2011) [arXiv:1004.5423].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Niklas Beisert
    • 1
  • Dennis Müller
    • 2
  • Jan Plefka
    • 1
    • 2
  • Cristian Vergu
    • 1
    • 3
  1. 1.Institut für Theoretische Physik, Eidgenössische Technische Hochschule ZürichZürichSwitzerland
  2. 2.Institut für Physik und IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Department of MathematicsKing’s College LondonLondonU.K.

Personalised recommendations