Advertisement

Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–47 | Cite as

Smooth Wilson loops in \( \mathcal{N}=4 \) non-chiral superspace

  • Niklas Beisert
  • Dennis Müller
  • Jan PlefkaEmail author
  • Cristian Vergu
Open Access
Regular Article - Theoretical Physics

Abstract

We consider a supersymmetric Wilson loop operator for 4d N = 4 super Yang-Mills theory which is the natural object dual to the AdS 5 × S 5 superstring in the AdS/CFT correspondence. It generalizes the traditional bosonic 1/2 BPS Maldacena-Wilson loop operator and completes recent constructions in the literature to smooth (non-light-like) loops in the full \( \mathcal{N}=4 \) non-chiral superspace. This Wilson loop operator enjoys global super-conformal and local kappa-symmetry of which a detailed discussion is given. Moreover, the finiteness of its vacuum expectation value is proven at leading order in perturbation theory. We determine the leading vacuum expectation value for general paths both at the component field level up to quartic order in anti-commuting coordinates and in the full non-chiral superspace in suitable gauges. Finally, we discuss loops built from quadric splines joined in such a way that the path derivatives are continuous at the intersection.

Keywords

Wilson ’t Hooft and Polyakov loops AdS-CFT Correspondence Extended Supersymmetry Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    D.A. Kosower, R. Roiban and C. Vergu, The six-point NMHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 83 (2011) 065018 [arXiv:1009.1376] [INSPIRE].ADSGoogle Scholar
  15. [15]
    L.J. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Bullimore and D. Skinner, Descent equations for superamplitudes, arXiv:1112.1056 [INSPIRE].
  20. [20]
    A.V. Belitsky, Conformal anomaly of super Wilson loop, Nucl. Phys. B 862 (2012) 430 [arXiv:1201.6073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP 07 (2012) 174 [arXiv:1112.1060] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    S. Caron-Huot and S. He, Three-loop octagons and n-gons in maximally supersymmetric Yang-Mills theory, JHEP 08 (2013) 101 [arXiv:1305.2781] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 111(2013) 091602 [arXiv:1303.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, JHEP 01 (2014) 008 [arXiv:1306.2058] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix III. The two-particle contributions, JHEP 08 (2014) 085 [arXiv:1402.3307] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix IV. Gluons and fusion, JHEP 09 (2014) 149 [arXiv:1407.1736] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP 12 (2011) 066 [arXiv:1105.5606] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    N. Beisert and C. Vergu, On the geometry of null polygons in full N = 4 superspace, Phys. Rev. D 86 (2012) 026006 [arXiv:1203.0525] [INSPIRE].ADSGoogle Scholar
  30. [30]
    N. Beisert, S. He, B.U.W. Schwab and C. Vergu, Null polygonal Wilson loops in full N = 4 superspace, J. Phys. A 45 (2012) 265402 [arXiv:1203.1443] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual superconformal symmetry from AdS 5 × S 5 superstring integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [INSPIRE].ADSGoogle Scholar
  39. [39]
    H. Münkler and J. Pollok, Minimal surfaces of the AdS 5 × S 5 superstring and the symmetries of super Wilson loops at strong coupling, J. Phys. A 48 (2015) 365402 [arXiv:1503.07553] [INSPIRE].zbMATHGoogle Scholar
  40. [40]
    J.C. Toledo, Smooth Wilson loops from the continuum limit of null polygons, arXiv:1410.5896 [INSPIRE].
  41. [41]
    D. Müller, H. Münkler, J. Plefka, J. Pollok and K. Zarembo, Yangian symmetry of smooth Wilson loops in N = 4 super Yang-Mills theory, JHEP 11 (2013) 081 [arXiv:1309.1676] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    H. Ooguri, J. Rahmfeld, H. Robins and J. Tannenhauser, Holography in superspace, JHEP 07 (2000) 045 [hep-th/0007104] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    J.P. Harnad, J. Hurtubise, M. Legare and S. Shnider, Constraint equations and field equations in supersymmetric N = 3 Yang-Mills theory, Nucl. Phys. B 256 (1985) 609 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    E. Witten, Twistor-like transform in ten-dimensions, Nucl. Phys. B 266 (1986) 245 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    J.P. Harnad and S. Shnider, Constraints and field equations for ten-dimensional super Yang-Mills theory, Commun. Math. Phys. 106 (1986) 183 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    N. Beisert, D. Muller, J. Plefka and C. Vergu, Integrability of smooth Wilson loops in N = 4 superspace, JHEP 12 (2015) 141 [arXiv:1509.05403] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    N. Beisert and C. Vergu, On the geometry of null polygons in full N = 4 superspace, Phys. Rev. D 86 (2012) 026006 [arXiv:1203.0525] [INSPIRE].ADSGoogle Scholar
  48. [48]
    P.S. Howe and G.G. Hartwell, A superspace survey, Class. Quant. Grav. 12 (1995) 1823 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    L.J. Mason and D. Skinner, An ambitwistor Yang-Mills Lagrangian, Phys. Lett. B 636 (2006) 60 [hep-th/0510262] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Bullimore and D. Skinner, Holomorphic linking, loop equations and scattering amplitudes in twistor space, arXiv:1101.1329 [INSPIRE].
  53. [53]
    J. Plefka and M. Staudacher, Two loops to two loops in N = 4 supersymmetric Yang-Mills theory, JHEP 09 (2001) 031 [hep-th/0108182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  55. [55]
    C.R. Mafra and O. Schlotterer, Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory, Phys. Rev. D 92 (2015) 066001 [arXiv:1501.05562] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of N = 4 super Yang-Mills, JHEP 01 (2010) 077[arXiv:0908.0684] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    I.N. McArthur, Kappa symmetry of Green-Schwarz actions in coset superspaces, Nucl. Phys. B 573 (2000) 811 [hep-th/9908045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Niklas Beisert
    • 1
  • Dennis Müller
    • 2
  • Jan Plefka
    • 1
    • 2
    Email author
  • Cristian Vergu
    • 1
    • 3
  1. 1.Institut für Theoretische Physik, Eidgenössische Technische Hochschule ZürichZürichSwitzerland
  2. 2.Institut für Physik und IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Department of MathematicsKing’s College LondonLondonU.K.

Personalised recommendations