Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–40 | Cite as

Dark Matter and gauged flavor symmetries

  • Fady BisharaEmail author
  • Admir Greljo
  • Jernej F. Kamenik
  • Emmanuel Stamou
  • Jure Zupan
Open Access
Regular Article - Theoretical Physics


We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental \( {\mathcal{Z}}_3 \) symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly 0.5 TeV and 5 TeV if the DM multiplet mass is split only radiatively. In general, however, no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.


Beyond Standard Model Cosmology of Theories beyond the SM Gauge Symmetry Quark Masses and SM Parameters 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Hirsch, S. Morisi, E. Peinado and J.W.F. Valle, Discrete dark matter, Phys. Rev. D 82 (2010) 116003 [arXiv:1007.0871] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M.S. Boucenna, M. Hirsch, S. Morisi, E. Peinado, M. Taoso and J.W.F. Valle, Phenomenology of Dark Matter from A 4 Flavor Symmetry, JHEP 05 (2011) 037 [arXiv:1101.2874] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    M.S. Boucenna, S. Morisi, E. Peinado, Y. Shimizu and J.W.F. Valle, Predictive discrete dark matter model and neutrino oscillations, Phys. Rev. D 86 (2012) 073008 [arXiv:1204.4733] [INSPIRE].ADSGoogle Scholar
  5. [5]
    D. Meloni, S. Morisi and E. Peinado, Neutrino phenomenology and stable dark matter with A4, Phys. Lett. B 697 (2011) 339 [arXiv:1011.1371] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Lindner, D. Schmidt and T. Schwetz, Dark Matter and neutrino masses from global U(1) BL symmetry breaking, Phys. Lett. B 705 (2011) 324 [arXiv:1105.4626] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. Batell, J. Pradler and M. Spannowsky, Dark Matter from Minimal Flavor Violation, JHEP 08 (2011) 038 [arXiv:1105.1781] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    B. Batell, T. Lin and L.-T. Wang, Flavored Dark Matter and R-Parity Violation, JHEP 01 (2014) 075 [arXiv:1309.4462] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    L. Lopez-Honorez and L. Merlo, Dark matter within the minimal flavour violation ansatz, Phys. Lett. B 722 (2013) 135 [arXiv:1303.1087] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B. Grinstein, M. Redi and G. Villadoro, Low Scale Flavor Gauge Symmetries, JHEP 11 (2010) 067 [arXiv:1009.2049] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Agrawal, B. Batell, D. Hooper and T. Lin, Flavored Dark Matter and the Galactic Center Gamma-Ray Excess, Phys. Rev. D 90 (2014) 063512 [arXiv:1404.1373] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C.-J. Lee and J. Tandean, Lepton-Flavored Scalar Dark Matter with Minimal Flavor Violation, JHEP 04 (2015) 174 [arXiv:1410.6803] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Bishara and J. Zupan, Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter, JHEP 01 (2015) 089 [arXiv:1408.3852] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Agrawal, M. Blanke and K. Gemmler, Flavored dark matter beyond Minimal Flavor Violation, JHEP 10 (2014) 72 [arXiv:1405.6709] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored Dark Matter and Its Implications for Direct Detection and Colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Hamze, C. Kilic, J. Koeller, C. Trendafilova and J.-H. Yu, Lepton-Flavored Asymmetric Dark Matter and Interference in Direct Detection, Phys. Rev. D 91 (2015) 035009 [arXiv:1410.3030] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Kumar and S. Tulin, Top-flavored dark matter and the forward-backward asymmetry, Phys. Rev. D 87 (2013) 095006 [arXiv:1303.0332] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.F. Kamenik and J. Zupan, Discovering Dark Matter Through Flavor Violation at the LHC, Phys. Rev. D 84 (2011) 111502 [arXiv:1107.0623] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Kile, A. Kobach and A. Soni, Lepton-Flavored Dark Matter, Phys. Lett. B 744 (2015) 330 [arXiv:1411.1407] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Kile and A. Soni, Flavored Dark Matter in Direct Detection Experiments and at LHC, Phys. Rev. D 84 (2011) 035016 [arXiv:1104.5239] [INSPIRE].ADSGoogle Scholar
  21. [21]
    L. Calibbi, A. Crivellin and B. Zaldivar, The Flavour Portal to Dark Matter, arXiv:1501.07268 [INSPIRE].
  22. [22]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Gabrielli and G.F. Giudice, Supersymmetric corrections to epsilon prime/epsilon at the leading order in QCD and QED, Nucl. Phys. B 433 (1995) 3 [Erratum ibid. B 507 (1997) 549] [hep-lat/9407029] [INSPIRE].
  25. [25]
    A. Ali and D. London, Profiles of the unitarity triangle and CP-violating phases in the standard model and supersymmetric theories, Eur. Phys. J. C 9 (1999) 687 [hep-ph/9903535] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.J. Buras, Minimal flavor violation, Acta Phys. Polon. B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A.L. Kagan, G. Perez, T. Volansky and J. Zupan, General Minimal Flavor Violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C. Smith, Proton stability from a fourth family, Phys. Rev. D 85 (2012) 036005 [arXiv:1105.1723] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A.J. Buras, M.V. Carlucci, L. Merlo and E. Stamou, Phenomenology of a Gauged SU(3)3 Flavour Model, JHEP 03 (2012) 088 [arXiv:1112.4477] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Backovic, K. Kong and M. McCaskey, MadDM v.1.0: Computation of Dark Matter Relic Abundance Using MadGraph5, Physics of the Dark Universe 5-6 (2014) 18 [arXiv:1308.4955] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Fields and S. Sarkar, Big-Bang nucleosynthesis (2006 Particle Data Group mini-review), astro-ph/0601514 [INSPIRE].
  36. [36]
    W. Hu and J. Silk, Thermalization and spectral distortions of the cosmic background radiation, Phys. Rev. D 48 (1993) 485 [INSPIRE].ADSGoogle Scholar
  37. [37]
    W. Hu and J. Silk, Thermalization constraints and spectral distortions for massive unstable relic particles, Phys. Rev. Lett. 70 (1993) 2661 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    F. Iocco, G. Mangano, G. Miele, O. Pisanti and P.D. Serpico, Primordial Nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rept. 472 (2009) 1 [arXiv:0809.0631] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. Lindley, Cosmological Constraints on the Lifetime of Massive Particles, Astrophys. J. 294 (1985) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M.H. Reno and D. Seckel, Primordial Nucleosynthesis: The Effects of Injecting Hadrons, Phys. Rev. D 37 (1988) 3441 [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Dimopoulos, R. Esmailzadeh, L.J. Hall and G.D. Starkman, Is the Universe Closed by Baryons? Nucleosynthesis With a Late Decaying Massive Particle, Astrophys. J. 330 (1988) 545 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R.J. Scherrer and M.S. Turner, Primordial Nucleosynthesis with Decaying Particles. 1. Entropy Producing Decays. 2. Inert Decays, Astrophys. J. 331 (1988) 19 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J.R. Ellis, G.B. Gelmini, J.L. Lopez, D.V. Nanopoulos and S. Sarkar, Astrophysical constraints on massive unstable neutral relic particles, Nucl. Phys. B 373 (1992) 399 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].ADSGoogle Scholar
  46. [46]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Zand dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  49. [49]
    A. Urbano and W. Xue, Constraining the Higgs portal with antiprotons, JHEP 03 (2015) 133 [arXiv:1412.3798] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D 87 (2013) 114510 [arXiv:1301.1114] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].ADSGoogle Scholar
  53. [53]
    L. Alvarez-Ruso, T. Ledwig, J. Martin Camalich and M. Vicente Vacas, Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data, EPJ Web Conf. 73 (2014) 04015.CrossRefGoogle Scholar
  54. [54]
    A. Crivellin, F. D’Eramo and M. Procura, New Constraints on Dark Matter Effective Theories from Standard Model Loops, Phys. Rev. Lett. 112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Crivellin, M. Hoferichter and M. Procura, Accurate evaluation of hadronic uncertainties in spin-independent WIMP-nucleon scattering: Disentangling two- and three-flavor effects, Phys. Rev. D 89 (2014) 054021 [arXiv:1312.4951] [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Boudaud, M. Cirelli, G. Giesen and P. Salati, A fussy revisitation of antiprotons as a tool for Dark Matter searches, JCAP 05 (2015) 013 [arXiv:1412.5696] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    O. Adriani et al., Measurement of the flux of primary cosmic ray antiprotons with energies of 60-MeV to 350-GeV in the PAMELA experiment, JETP Lett. 96 (2013) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi-LAT Data, arXiv:1503.02641 [INSPIRE].
  59. [59]
    M.R. Buckley et al., Search for Gamma-ray Emission from Dark Matter Annihilation in the Large Magellanic Cloud with the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 102001 [arXiv:1502.01020] [INSPIRE].ADSGoogle Scholar
  60. [60]
    Fermi LAT collaboration, M. Ackermann et al., Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background, arXiv:1501.05464 [INSPIRE].
  61. [61]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  62. [62]
    CMS collaboration, Inclusive search for a vector-like T quark with charge \( \frac{2}{3} \) in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 729 (2014) 149 [arXiv:1311.7667] [INSPIRE].
  63. [63]
    E. Eichten, I. Hinchliffe, K.D. Lane and C. Quigg, Super Collider Physics, Rev. Mod. Phys. 56 (1984) 579 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    K.D. Lane and M.V. Ramana, Walking technicolor signatures at hadron colliders, Phys. Rev. D 44 (1991) 2678 [INSPIRE].ADSGoogle Scholar
  65. [65]
    A.J. Buras, S. Jager and J. Urban, Master formulae for Delta F=2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].ADSGoogle Scholar
  67. [67]
    A.J. Buras, D. Guadagnoli and G. Isidori, On ϵ K Beyond Lowest Order in the Operator Product Expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in Δ F = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [INSPIRE].ADSGoogle Scholar
  69. [69]
    J. Brod and M. Gorbahn, Next-to-Next-to-Leading-Order Charm-Quark Contribution to the CP-violation Parameter ϵ K and ΔM K, Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Brod and M. Gorbahn, ϵ K at Next-to-Next-to-Leading Order: The Charm-Top-Quark Contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684] [INSPIRE].ADSGoogle Scholar
  71. [71]
    A.J. Buras, L. Merlo and E. Stamou, The Impact of Flavour Changing Neutral Gauge Bosons on \( \overline{B}\to {X}_s\gamma \), JHEP 08 (2011) 124 [arXiv:1105.5146] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    M. Misiak et al., Estimate of \( \mathrm{\mathcal{B}}\left(\overline{B}\to {X}_s\gamma \right) \) at \( \mathcal{O}\left({\alpha}_s^2\right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    P. Gambino and M. Misiak, Quark mass effects in \( \overline{B}\to {X}_s\gamma \), Nucl. Phys. B 611 (2001) 338 [hep-ph/0104034] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M. Misiak and M. Steinhauser, NNLO QCD corrections to the \( \overline{B}\to {X}_s\gamma \) matrix elements using interpolation in m c, Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].
  76. [76]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO - The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Fady Bishara
    • 1
    • 2
    Email author
  • Admir Greljo
    • 3
    • 4
  • Jernej F. Kamenik
    • 5
    • 6
    • 7
  • Emmanuel Stamou
    • 8
  • Jure Zupan
    • 1
  1. 1.Department of PhysicsUniversity of CincinnatiCincinnatiU.S.A.
  2. 2.Theoretical Physics DepartmentFermilabBataviaU.S.A.
  3. 3.Physik-InstitutUniversität ZürichZürichSwitzerland
  4. 4.Department of PhysicsUniversity of SarajevoSarajevoBosnia and Herzegovina
  5. 5.Jožef Stefan InstituteLjubljanaSlovenia
  6. 6.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  7. 7.CERN TH-PH DivisionMeyrinSwitzerland
  8. 8.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations