Twistors and supertwistors for exceptional field theory

Abstract

As a means of examining the section condition and its possible solutions and relaxations, we perform twistor transforms related to versions of exceptional field theory with Minkowski signature. The spinor parametrisation of the momenta naturally solves simultaneously both the mass-shell condition and the (weak) section condition. It is shown that the incidence relations for multi-particle twistors force them to share a common section, but not to be orthogonal. The supersymmetric extension contains additional scalar fermionic variables shown to be kappa-symmetry invariants. We speculate on some implications, among them a possible relation to higher spin theory.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    M.J. Duff, Duality Rotations in String Theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  2. [2]

    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  3. [3]

    W. Siegel, Two-vierbein formalism for string-inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. [4]

    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. [5]

    W. Siegel, Manifest duality in low-energy superstrings, in the proceedings of the International Conference on Strings 93, Berkeley, California, U.S.A., May 24-29 1993 [hep-th/9308133] [INSPIRE].

  6. [6]

    C.M. Hull, A Geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  7. [7]

    C.M. Hull, Doubled Geometry and T-Folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  8. [8]

    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  9. [9]

    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  10. [10]

    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  11. [11]

    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry I: Type II Theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  12. [12]

    O. Hohm and S.K. Kwak, Frame-like Geometry of Double Field Theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  13. [13]

    O. Hohm and S.K. Kwak, N = 1 Supersymmetric Double Field Theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  14. [14]

    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: Application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  15. [15]

    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    I. Jeon, K. Lee and J.-H. Park, Supersymmetric Double Field Theory: Stringy Reformulation of Supergravity, Phys. Rev. D 85 (2012) 081501 [Erratum ibid. D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].

  17. [17]

    O. Hohm and B. Zwiebach, Large Gauge Transformations in Double Field Theory, JHEP 02 (2013) 075 [arXiv:1207.4198] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  18. [18]

    J.-H. Park, Comments on double field theory and diffeomorphisms, JHEP 06 (2013) 098 [arXiv:1304.5946] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  19. [19]

    D.S. Berman, M. Cederwall and M.J. Perry, Global aspects of double geometry, JHEP 09 (2014) 066 [arXiv:1401.1311] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  20. [20]

    M. Cederwall, The geometry behind double geometry, JHEP 09 (2014) 070 [arXiv:1402.2513] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  21. [21]

    O. Hohm, D. Lüst and B. Zwiebach, The Spacetime of Double Field Theory: Review, Remarks and Outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  22. [22]

    G. Papadopoulos, Seeking the balance: Patching double and exceptional field theories, JHEP 10 (2014) 089 [arXiv:1402.2586] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  23. [23]

    C.M. Hull, Finite Gauge Transformations and Geometry in Double Field Theory, JHEP 04 (2015) 109 [arXiv:1406.7794] [INSPIRE].

    ADS  Article  MathSciNet  MATH  Google Scholar 

  24. [24]

    M. Cederwall, T-duality and non-geometric solutions from double geometry, Fortsch. Phys. 62 (2014) 942 [arXiv:1409.4463] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  25. [25]

    R. Blumenhagen, F. Hassler and D. Lüst, Double Field Theory on Group Manifolds, JHEP 02 (2015) 001 [arXiv:1410.6374] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  26. [26]

    R. Blumenhagen, P. du Bosque, F. Hassler and D. Lüst, Generalized Metric Formulation of Double Field Theory on Group Manifolds, JHEP 08 (2015) 056 [arXiv:1502.02428] [INSPIRE].

    ADS  Article  MathSciNet  MATH  Google Scholar 

  27. [27]

    C.M. Hull, Generalised Geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  28. [28]

    P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  29. [29]

    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  30. [30]

    D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  31. [31]

    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  32. [32]

    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The Local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  33. [33]

    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and Generalised Geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  34. [34]

    A. Coimbra, C. Strickland-Constable and D. Waldram, \( {E_d}_{(d)}\times {\mathbb{R}}^{+} \) generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  35. [35]

    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry II: \( {E_d}_{(d)}\times {\mathbb{R}}^{+} \) and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  36. [36]

    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    J.-H. Park and Y. Suh, U-geometry: SL(5), JHEP 04 (2013) 147 [Erratum ibid. 11 (2013) 210] [arXiv:1302.1652] [INSPIRE].

  38. [38]

    M. Cederwall, J. Edlund and A. Karlsson, Exceptional geometry and tensor fields, JHEP 07 (2013) 028 [arXiv:1302.6736] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  39. [39]

    M. Cederwall, Non-gravitational exceptional supermultiplets, JHEP 07 (2013) 025 [arXiv:1302.6737] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  40. [40]

    M. Cederwall, M-branes on U-folds, in the proceedings of the 7th International Workshop on Supersymmetries and Quantum Symmetries (SQS 07), Dubna, Russia, July 30-August 4 2007 [arXiv:0712.4287] [INSPIRE].

  41. [41]

    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, Extended geometry and gauged maximal supergravity, JHEP 06 (2013) 046 [arXiv:1302.5419] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  42. [42]

    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, The gauge structure of Exceptional Field Theories and the tensor hierarchy, JHEP 04 (2014) 049 [arXiv:1312.4549] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    O. Hohm and H. Samtleben, Exceptional Field Theory I: E 6(6) covariant Form of M-theory and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].

  45. [45]

    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].

  46. [46]

    M. Cederwall and J.A. Rosabal, E 8 geometry, JHEP 07 (2015) 007 [arXiv:1504.04843] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  48. [48]

    G. Bossard and A. Kleinschmidt, Loops in exceptional field theory, arXiv:1510.07859 [INSPIRE].

  49. [49]

    K. Lee, Towards Weakly Constrained Double Field Theory, arXiv:1509.06973 [INSPIRE].

  50. [50]

    O. Hohm, W. Siegel and B. Zwiebach, Doubled α -geometry, JHEP 02 (2014) 065 [arXiv:1306.2970] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  51. [51]

    R. Penrose and M.A.H. MacCallum, Twistor theory: An Approach to the quantization of fields and space-time, Phys. Rept. 6 (1972) 241 [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    A. Ferber, Supertwistors and Conformal Supersymmetry, Nucl. Phys. B 132 (1978) 55 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  53. [53]

    T. Shirafuji, Lagrangian Mechanics of Massless Particles With Spin, Prog. Theor. Phys. 70 (1983) 18 [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  54. [54]

    A.K.H. Bengtsson, I. Bengtsson, M. Cederwall and N. Linden, Particles, Superparticles and Twistors, Phys. Rev. D 36 (1987) 1766 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. [55]

    I. Bengtsson and M. Cederwall, Particles, Twistors and the Division Algebras, Nucl. Phys. B 302 (1988) 81 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  56. [56]

    N. Berkovits, A Supertwistor Description of the Massless Superparticle in Ten-dimensional Superspace, Phys. Lett. B 247 (1990) 45 [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    M. Cederwall, Octonionic particles and the S 7 symmetry, J. Math. Phys. 33 (1992) 388 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  58. [58]

    M. Cederwall, Introduction to division algebras, sphere algebras and twistors, hep-th/9310115 [INSPIRE].

  59. [59]

    P. Claus, M. Günaydın, R. Kallosh, J. Rahmfeld and Y. Zunger, Supertwistors as quarks of SU(2, 2|4), JHEP 05 (1999) 019 [hep-th/9905112] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  60. [60]

    M. Cederwall, Geometric construction of AdS twistors, Phys. Lett. B 483 (2000) 257 [hep-th/0002216] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  61. [61]

    M. Cederwall, AdS twistors for higher spin theory, AIP Conf. Proc. 767 (2005) 96 [hep-th/0412222] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  62. [62]

    C.D.A. Blair, E. Malek and J.-H. Park, M-theory and Type IIB from a Duality Manifest Action, JHEP 01 (2014) 172 [arXiv:1311.5109] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    A. Sudbery, Division algebras, (pseudo)orthogonal groups and spinors, J. Phys. A 17 (1984) 939.

    ADS  MATH  MathSciNet  Google Scholar 

  64. [64]

    T. Kugo and P.K. Townsend, Supersymmetry and the Division Algebras, Nucl. Phys. B 221 (1983) 357 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  65. [65]

    M. Cederwall, Jordan algebra dynamics, Phys. Lett. B 210 (1988) 169 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  66. [66]

    M. Hatsuda, K. Kamimura and W. Siegel, Superspace with manifest T-duality from type-II superstring, JHEP 06 (2014) 039 [arXiv:1403.3887] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    B.E.W. Nilsson, Pure Spinors as Auxiliary Fields in the Ten-dimensional Supersymmetric Yang-Mills Theory, Class. Quant. Grav. 3 (1986) L41 [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  68. [68]

    P.S. Howe, Pure spinors lines in superspace and ten-dimensional supersymmetric theories, Phys. Lett. B 258 (1991) 141 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  69. [69]

    P.S. Howe, Pure spinors, function superspaces and supergravity theories in ten-dimensions and eleven-dimensions, Phys. Lett. B 273 (1991) 90 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  70. [70]

    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  71. [71]

    N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 09 (2001) 016 [hep-th/0105050] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  72. [72]

    M. Cederwall, B.E.W. Nilsson and D. Tsimpis, The Structure of maximally supersymmetric Yang-Mills theory: Constraining higher order corrections, JHEP 06 (2001) 034 [hep-th/0102009] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  73. [73]

    M. Cederwall, B.E.W. Nilsson and D. Tsimpis, D = 10 super Yang-Mills at O(α2), JHEP 07 (2001) 042 [hep-th/0104236] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  74. [74]

    M. Cederwall, Superspace methods in string theory, supergravity and gauge theory, in the proceedings of the 37th Karpacz Winter School of Theoretical Physics: New Developments in Fundamental Interactions Theories, Karpacz, Poland, February 6-15 2001 [hep-th/0105176] [INSPIRE].

  75. [75]

    M. Cederwall, B.E.W. Nilsson and D. Tsimpis, Spinorial cohomology and maximally supersymmetric theories, JHEP 02 (2002) 009 [hep-th/0110069] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  76. [76]

    M. Cederwall, Towards a manifestly supersymmetric action for 11-dimensional supergravity, JHEP 01 (2010) 117 [arXiv:0912.1814] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  77. [77]

    M. Cederwall, D = 11 supergravity with manifest supersymmetry, Mod. Phys. Lett. A 25 (2010) 3201 [arXiv:1001.0112] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  78. [78]

    M. Cederwall, N = 8 superfield formulation of the Bagger-Lambert-Gustavsson model, JHEP 09 (2008) 116 [arXiv:0808.3242] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  79. [79]

    M. Cederwall, Superfield actions for N = 8 and N = 6 conformal theories in three dimensions, JHEP 10 (2008) 070 [arXiv:0809.0318] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  80. [80]

    M. Cederwall, Pure spinor superfieldsan overview, Springer Proc. Phys. 153 (2014) 61 [arXiv:1307.1762] [INSPIRE].

    Article  Google Scholar 

  81. [81]

    I.A. Bandos, J. Lukierski and D.P. Sorokin, Superparticle models with tensorial central charges, Phys. Rev. D 61 (2000) 045002 [hep-th/9904109] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  82. [82]

    M.A. Vasiliev, Conformal higher spin symmetries of 4D massless supermultiplets and osp(L, 2M ) invariant equations in generalized (super)space, Phys. Rev. D 66 (2002) 066006 [hep-th/0106149] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  83. [83]

    O.A. Gelfond and M.A. Vasiliev, Sp(8) invariant higher spin theory, twistors and geometric BRST formulation of unfolded field equations, JHEP 12 (2009) 021 [arXiv:0901.2176] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Cederwall.

Additional information

ArXiv ePrint: 1510.02298

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cederwall, M. Twistors and supertwistors for exceptional field theory. J. High Energ. Phys. 2015, 1–13 (2015). https://doi.org/10.1007/JHEP12(2015)123

Download citation

Keywords

  • Superspaces
  • Space-Time Symmetries
  • M-Theory