Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–29 | Cite as

One-loop stabilization of the fuzzy four-sphere via softly broken SUSY

Open Access
Regular Article - Theoretical Physics

Abstract

We describe a stabilization mechanism for fuzzy SN4 in the Euclidean IIB matrix model due to vacuum energy in the presence of a positive mass term. The one-loop effective potential for the radius contains an attractive contribution attributed to supergravity, while the mass term induces a repulsive contribution for small radius due to SUSY breaking. This leads to a stabilization of the radius. The mechanism should be pertinent to recent results on the genesis of 3+1-dimensional space-time in the Minkowskian IIB model.

Keywords

M(atrix) Theories Non-Commutative Geometry Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Madore, The Fuzzy sphere, Class. Quant. Grav. 9 (1992) 69 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J. Hoppe, Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, Ph.D. Thesis, MIT, U.S.A. 1982.Google Scholar
  3. [3]
    P.-M. Ho and M. Li, Fuzzy spheres in AdS/CFT correspondence and holography from noncommutativity, Nucl. Phys. B 596 (2001) 259 [hep-th/0004072] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    D. Jurman and H. Steinacker, 2D fuzzy Anti-de Sitter space from matrix models, JHEP 01 (2014) 100 [arXiv:1309.1598] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Castelino, S. Lee and W. Taylor, Longitudinal five-branes as four spheres in matrix theory, Nucl. Phys. B 526 (1998) 334 [hep-th/9712105] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    S. Ramgoolam, On spherical harmonics for fuzzy spheres in diverse dimensions, Nucl. Phys. B 610 (2001) 461 [hep-th/0105006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    P.-M. Ho and S. Ramgoolam, Higher dimensional geometries from matrix brane constructions, Nucl. Phys. B 627 (2002) 266 [hep-th/0111278] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Y. Kimura, Noncommutative gauge theory on fuzzy four sphere and matrix model, Nucl. Phys. B 637 (2002) 177 [hep-th/0204256] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    J. Medina and D. O’Connor, Scalar field theory on fuzzy S 4, JHEP 11 (2003) 051 [hep-th/0212170] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Abe, Construction of fuzzy S 4, Phys. Rev. D 70 (2004) 126004 [hep-th/0406135] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P. Valtancoli, Projective modules over the fuzzy four sphere, Mod. Phys. Lett. A 17 (2002) 2189 [hep-th/0210166] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    H. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    H. Steinacker, Gravity and compactified branes in matrix models, JHEP 07 (2012) 156 [arXiv:1202.6306] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J. Heckman and H. Verlinde, Covariant non-commutative space-time, Nucl. Phys. B 894 (2015) 58 [arXiv:1401.1810] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions, Phys. Rev. Lett. 108 (2012) 011601 [arXiv:1108.1540] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Ito, S.-W. Kim, Y. Koizuka, J. Nishimura and A. Tsuchiya, A renormalization group method for studying the early universe in the Lorentzian IIB matrix model, PTEP 2014 (2014) 083B01 [arXiv:1312.5415] [INSPIRE].MATHGoogle Scholar
  18. [18]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Late time behaviors of the expanding universe in the IIB matrix model, JHEP 10 (2012) 147 [arXiv:1208.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. Azuma, S. Bal, K. Nagao and J. Nishimura, Absence of a fuzzy S 4 phase in the dimensionally reduced 5 − D Yang-Mills- Chern-Simons model, JHEP 07 (2004) 066 [hep-th/0405096] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Chepelev and A.A. Tseytlin, Interactions of type IIB D-branes from D instanton matrix model, Nucl. Phys. B 511 (1998) 629 [hep-th/9705120] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    S. Bal, M. Hanada, H. Kawai and F. Kubo, Fuzzy torus in matrix model, Nucl. Phys. B 727 (2005) 196 [hep-th/0412303] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    C.N. Yang, On quantized space-time, Phys. Rev. 72 (1947) 874 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    M. Fabinger, Higher dimensional quantum Hall effect in string theory, JHEP 05 (2002) 037 [hep-th/0201016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    D. Karabali and V.P. Nair, Quantum Hall effect in higher dimensions, matrix models and fuzzy geometry, J. Phys. A 39 (2006) 12735 [hep-th/0606161] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  26. [26]
    J. Medina, I. Huet, D. O’Connor and B.P. Dolan, Scalar and Spinor Field Actions on Fuzzy S 4 : fuzzy CP 3 as a S F2 bundle over S F4, JHEP 08 (2012) 070 [arXiv:1208.0348] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.P. Balachandran, B.P. Dolan, J.-H. Lee, X. Martin and D. O’Connor, Fuzzy complex projective spaces and their star products, J. Geom. Phys. 43 (2002) 184 [hep-th/0107099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    U. Carow-Watamura, H. Steinacker and S. Watamura, Monopole bundles over fuzzy complex projective spaces, J. Geom. Phys. 54 (2005) 373 [hep-th/0404130] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187 [hep-th/0303037] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    J.L. Karczmarek and K. H.-C. Yeh, Noncommutative spaces and matrix embeddings on flat \( {\mathbb{R}}^{{}^{2n+1}} \), JHEP 11 (2015) 146 [arXiv:1506.07188] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    D.N. Blaschke and H. Steinacker, On the 1-loop effective action for the IKKT model and non-commutative branes, JHEP 10 (2011) 120 [arXiv:1109.3097] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, Intersecting branes and a standard model realization in matrix models, JHEP 09 (2011) 115 [arXiv:1107.0265] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    J. Nishimura, T. Okubo and F. Sugino, Systematic study of the SO (10) symmetry breaking vacua in the matrix model for type IIB superstrings, JHEP 10 (2011) 135 [arXiv:1108.1293] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations