Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–16 | Cite as

Quantum information erasure inside black holes

Open Access
Regular Article - Theoretical Physics

Abstract

An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

Keywords

AdS-CFT Correspondence Models of Quantum Gravity Black Holes 

References

  1. [1]
    D.A. Lowe and L. Thorlacius, Black hole complementarity: the inside view, Phys. Lett. B 737 (2014) 320 [arXiv:1402.4545] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    S. Corley and T. Jacobson, Lattice black holes, Phys. Rev. D 57 (1998) 6269 [hep-th/9709166] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].ADSGoogle Scholar
  4. [4]
    D.A. Lowe and L. Thorlacius, Comments on the black hole information problem, Phys. Rev. D 73 (2006) 104027 [hep-th/0601059] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301.CrossRefADSGoogle Scholar
  6. [6]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  7. [7]
    S. Weinberg, Lectures on quantum mechanics, Cambridge University Press, Cambridge U.K. (2012).CrossRefMATHGoogle Scholar
  8. [8]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    L. Susskind and L. Thorlacius, Gedanken experiments involving black holes, Phys. Rev. D 49 (1994) 966 [hep-th/9308100] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    L. Brillouin, Wave propagation and group velocity, Academic Press, U.S.A. (1960).MATHGoogle Scholar
  11. [11]
    S.B. Giddings, Nonviolent information transfer from black holes: a field theory parametrization, Phys. Rev. D 88 (2013) 024018 [arXiv:1302.2613] [INSPIRE].ADSGoogle Scholar
  12. [12]
    E. Farhi, A.H. Guth and J. Guven, Is it possible to create a universe in the laboratory by quantum tunneling?, Nucl. Phys. B 339 (1990) 417 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    G.L. Alberghi, D.A. Lowe and M. Trodden, Charged false vacuum bubbles and the AdS/CFT correspondence, JHEP 07 (1999) 020 [hep-th/9906047] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  14. [14]
    D.A. Lowe and S. Roy, Punctuated eternal inflation via AdS/CFT, Phys. Rev. D 82 (2010) 063508 [arXiv:1004.1402] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Corley and T. Jacobson, Hawking spectrum and high frequency dispersion, Phys. Rev. D 54 (1996) 1568 [hep-th/9601073] [INSPIRE].ADSGoogle Scholar
  16. [16]
    D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev. Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    S.G. Avery and D.A. Lowe, Event horizons and holography, arXiv:1310.7999 [INSPIRE].
  18. [18]
    S.G. Avery and D.A. Lowe, Typical event horizons in AdS/CFT, arXiv:1501.05573 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsBrown UniversityProvidenceU.S.A.
  2. 2.University of Iceland, Science InstituteReykjavikIceland
  3. 3.The Oskar Klein Centre for Cosmoparticle Physics, Department of PhysicsStockholm University, AlbaNova University CentreStockholmSweden

Personalised recommendations